京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近日,全国抗击新冠肺炎疫情先进事迹报告会在广东举行,钟南山院士参会并发言,他表示九个月抗疫洗礼,各种“逆行者”深入人心,那些热衷追星、渴望“钱多事少离家近”的年轻人,开始思索处世之道,懂得了报效祖国的意义。
确实,疫情让年轻人感受到了医生的价值,促使今年高考后,广东省报考医学学生比例大幅度增加,环比之前增加了3700多人。
钟南山还提出了值得深思的灵魂拷问:学医的能赚很多钱吗?随后,他给出了答案:不能,但年轻人如此的表现,体现了做人应有的态度。
突如其来的疫情改变了很多人的生活,刷新了很多人的观念,越来越多年轻人选择大学专业时,不再以挣钱为首,而是以祖国需要、大众需求为先!
这种大环境下,像医学专业一样因疫情而走红的高考报考专业,还有大数据相关专业。
无论是6月北京突发的疫情,还是9月底青岛突发的疫情,相关部门都是利用大数据技术精准锁定疫情源头,并迅速找出接触人员进行核酸检测,阻断了疫情蔓延的步伐。
化身为稳控全局的利器,大数据收获了年轻人的青睐。不过,部分家长或老师对大数据存在误解,认为报考该专业需极佳电脑基础,其实不然。
大数据分析是研究大量且多样化数据,从中找隐藏规律并进行决策和预测的过程。早期多用于内部,特别是收集、组织和分析大量数据的机构。
如今,大数据分析工具越来越多,在各行各业逐渐普遍化,许多企业通过大数据分析,总能快人一步做出更明智的商业决策。
同时,2020高校应届生专业就业竞争力30强排行榜中数据科学与大数据技术首次入围,以就业竞争力指数190.4的成绩位列第三。
可见,未来其大数据相关专业的就业竞争力十分强大,是高考生值得选择的专业之一。然而,大数据分析并非编程,对计算机要求没那么高,小编列举些大数据分析需具备的知识和能力,仅供大家参考!
基础知识
大数据分析是在数学知识的基石上,引入了统计学,基础知识包含数学、线性代数等,这些是决定数据分析职业发展的高度。
初级数据分析学描述统计相关内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习等更多知识,算法相关的工作则要对高数进行深入学习。
分析工具
最容易入门的数据分析工具是Excel,所以其函数、数据透视表和公式须熟练。另外,会一个专业统计分析技能更好,SPSS作为入门是极好滴。和数据打交道必然会接触数据库,所以SQL基本的增、删、改、查等技能要掌握。
最后,可学些主流工具,如Python或R语言,有些行业会用到SAS或其他工具,可依据行业选择。
业务知识
脱离业务的纯数据分析没任何意义,优秀的大数据分析师往往对业务了如指掌。熟悉业务后再去获取数据,对数据进行分析才更得心应手。
沟通交流
数据分析会涉及很多与业务、技术部门的沟通,做报告后也需进行展示,并说服别人接受自己的结果。因此,协调沟通能力亦是非常重要的素质之一。
学习能力
无论是数据分析,还是其他岗位,都需拥有持续、快速学习的能力,学业务逻辑、行业知识、技术工具、分析框架……
——小编结语
随着科技日新月异,大数据技术必将更成熟,给人类带来了更多便利。从大数据分析所需具备的能力和基础来看,无论你是学生,还是职场人士,都能通过学习和实践,掌握大数据工具来进行分析,学以致用。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22