
很多人到中年才发现,自己的职业生涯越来越局限,对于为什么会成这样,却理不出头绪来。
其实,这里可套用一个适用于多领域的原则,即:正确的努力会让路越走越宽,而一旦方向错误,往往会让自己陷入死胡同。
今天,我们就来探讨下,哪些思维方式容易让你未来的职场之路“无路可走”。
处处给自己设限
这种思维不易察觉,谁不想在事业上一展抱负,怎么可能给自己设限?所以,要先学会正确的自我省察。
▷ 你是否已经习惯了安逸?
▷ 对改变是否非常排斥?
▷ 是不是无法静下心来学习新知识和新技能?
▷ 面对挑战,总觉得自己不行?
在职场上,一定要多向上看、向外看,多接触新东西,多学习新技能,多和人打交道……
舒适区滞留太久会让人产生错误的自我认知,建议职场人可根据专业背景,去匹配其他岗位、公司,甚至行业,实现横向扩展。
比如:你是“码农”,但表达和讲解力较强,就别局限在程序员上,完全可向该技术领域的培训专家或咨询顾问发展,甚至以技术入股跻身技术合伙人行列。
人无远虑必有近忧
人往往会随大流,盲目跟风,随意选择。有个经典面试问题:为什么会选择我们公司?
有说朋友推荐、有说看到招聘就来了、有说薪资高、有说环境或福利好等,看到的往往是短期利益,如此易遭遇“人无远虑必有近忧”的困境。
俗话说,机会总是留给有准备的人,给自己制定长期职业规划,一步一个脚印,从而避开中年职业危机。
无法持之以恒
现今社会流行“快文化”,让我们变得浮躁,无论从事什么都比较缺乏耐心,无法持之以恒。
所以出现了频繁跳槽,却越跳越糟,让很多职场人错失了学习知识、掌握技能的最佳时机,以致人到中年却一事无成。
无论哪个行业,唯有持之以恒,在原有优势基础上进行转型和提升,成为自己所在领域的专家,才能将职业路线不断拓宽。
当然,除了警惕让你越走越窄的思维外,还要选择好前景行业,让自己能搭乘上数字化时代的“和谐号”,成“越老越值钱”的人。
世界经济论坛发布的《2018就业前景报告》指出,2020年全球将有7500万工作岗位被人工智能替代。同时,亦会衍生出1.33亿个新的就业岗位。
调查显示,人工智能将迅速取代会计、客户管理、初级技术工人、邮政快递、秘书、司机等行业的劳动者,使大量具有可编码、可重复性的职业快速贬值。
不过,内外科医生、数据分析师、制造业一线主管、律师、软件应用开发工程师等职业,却有越来越广阔的职业发展空间。
拿极受追捧的数据分析师来说,2020年中国大数据行业人才需求规模预计将达210万,未来5年仍将保持30%-40%的增速,需求总量在2000万人左右。
近几年高校纷纷新增大数据相关专业,但输出量远远无法填补目前市场的巨大缺口,导致数据分析岗位高薪却供不应求。
资料来源 / ITPUB博客
迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。从下图中,可以看出数据分析岗的分工细、路子广,选择多……
只要你持之以恒成为其中某一技术线的专家,就能实现“越来越值钱”的职业目标。接下来,再给大家具体推荐些数据分析行业越老越值钱的工作。
数据分析岗中越老越值钱的岗位
Python数据分析师
企业想在竞争激烈的市场中胜出,决策速度和反馈效率尤为重要。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,这是现代企业最迫切且不可避免的问题。Python数据分析在企业决策中散发出了极大的魅力,受到从业者的追捧。
业务数据分析师
理性数据分析辅助实战经验,成为主流决策方式,企业急需业务数据分析过硬的人才。
人工智能工程师
当下,人工智能不断渗透各行各业,众多岗位已经被其取代。与其等待着被失业,不如主动出击,成为AI领域的一员,做人工智能的“爸爸”。
不过,由于人工智能的概念宽泛,涉及到算法、识别、语言处理等技术,所以被社会大众一致公认为高不可攀的高科技,导致很多人不敢轻易涉足。
如果你也是这样想,就太可惜了,因为你可能会由于一些认知上的偏见,错过了这个未来最具发展潜力的行业,它其实并没有我们想象中的那么遥不可及,而且也是越老越值钱的岗位之一。
结束语:“越老越值钱”的职业不但有,且会越来越多,就看你能否把握住这些绝佳机会。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18