
作者:接地气的陈老师
来源:接地气学堂
一提人工智能大数据,必有人提啤酒与尿布,有意思的是,都2020年了,还有人信这个老掉牙的都市传说。今天我们系统讲解一下。
1 站在背后的关联规则
支持啤酒与尿布故事的,是关联规则算法。注意:关联规则算法本身没啥问题,这是一种发现关联关系(注意:不是因果关系哦)的手段,并且它的算法原理非常简单,需要的数据也非常少,因此适用范围非常广。
假设有6种产品,ABCDEF,一个客人买了AB去结账,收银员打出一张小票,上边有AB产品的名称、价格,我们可以用0、1代表是否有该商品,简单把小票表示成:
类似地,如果有5张订单,可以表示成:
注意,即使没有计算,用肉眼也能看到,似乎ABC三个产品在订单里同时出现的几率很高,这就是关联规则的基本思路:找到同时出现频率高的组合。只不过,我们需要用一些指标来衡量:到底什么算高。
因为有六个商品,所以同时出现的组合有很多种:A+B,A+B+C等,我们从最简单的两两组合开始计算,再算三三、四四……计算组合的时候,我们希望组合出现的频率越高越好,因此有了支持度概念:
两个商品的购买可能有先后顺序,比如先A后B,这时候可以算购买A的情况下,用户购买B的概率,从而决定在用户购买A以后推B产品,或者是C、D产品。因此引入置信度概念:
注意,虽然算出来购买A以后有75%概率购买B,但是不一定非等到用户买A再推荐B。如这个小例子里,直接推B也有80%购买率,显然非等到买了A再推B会很不划算,购买率还跌了,因此引入提升度概念:
支持度、置信度、提升度的计算都很简单,理论上,只需要设定支持度与置信度的要求,之后按一定顺序遍历所有组合(比如Apriori算法),即能找出所有符合条件的组合。这种方法最大的优势就是简单,计算方法、计算逻辑都简单,且需要的数据很少,只要有订单数据即可,数据采集永远是算法的头号大敌,一个需要数据少的方法,自然会被极其广泛的运用。特别是应用于购物篮分析。
然而,运用归运用,你真在哪个超市见过啤酒与尿布堆在一起的吗。很快讲故事的人便发现了这个bug,于是改口说:国外的超市……欺负大家出国少呀。那事实的真相到底是啥呢?
2 为啥现实中不存在
很遗憾,啤酒与尿布在现实中不存在。首先因为啤酒与尿布是teradata公司的销售编出来的故事。它完美符合了卖科技产品需要“意料之外,情理之中”的讲故事原则,因此才流传广泛。在实际运用的时候,无论是技术上还是业务上,类似“啤酒与尿布”的完美案例都不存在。
从技术上看,关联规则作为一种无监督找规律方法,更适合做探索性分析,不太适合直接指向一个可落地的SKU组合。注意,上边的例子是高度浓缩的,所以看起来简单可行。比如啤酒,实际上还包含了品牌、包装、价格、是否促销、是否临近保质期等众多因素。实际上SKU极其庞大,且单个SKU的数据非常零散。
如果只笼统地用“啤酒”这个大品类做关联,得出的数据几乎没啥指导意义。如果细到某一个具体价位具体保质期的SKU, 比如“Corona/科罗娜啤酒330ml*24瓶178元非折扣非临期”与“宝适绿帮纸尿裤S164新生婴儿超薄透气干爽款155元”单个具体SKU之间的支持度和置信度都非常低,很难达到落地的程度。
这是导致啤酒与尿布不会出现在超市里根本原因。随便一个3米5门头的小超市尿布至少几十款,啤酒至少几十款,到底哪个该摆在一起!还要考虑啤酒的冷藏问题,总不能在冰柜里放尿布吧。至于几百上千平米大超市,啤酒SKU数几千款,尿布几千款,货架长达数十米,只能分开放在酒水饮料区和母婴用品区。这俩摆在一起,肯定被商场主管活活殴打致死。
从业务上讲,关联规则同所有数学、统计学模型一样,只能说明两个数字之间有关联关系,无法论证任何实际意义上逻辑关系。“妈妈们买尿布的时候会顺便给爸爸买啤酒”的解释,完全就是为了圆故事而圆故事。如果真站在买尿布的妈妈的角度,她有100个理由去买更更值得买的东西,比如干纸巾和湿纸巾。给BB换过尿布的人都知道,那纸巾用起来简直像泼水一样快。有更直接、更明确的驱动力存在,为啥要舍近求远。
3 现实中是怎么玩的
本质上,消费者的决策是多因素的,生理性需求,认知层次,产品价格,材质,广告、宣传、都会影响消费者最终决策。因此想带动关联销售,方法多的很。
最直接的,基于业务规律的推荐,也就是俗称的硬规则。比如有的书就上中下册,拆开了就是没头没尾;有的药就是要一起吃,乱吃会死人。这些商品有固定的规律。这时候就不需要看数据,而是根据业务规律直接做推荐。
有些不是硬规则,但是是人们约定俗成的习惯。比如出去烧烤,就是需要碳、炉子、签子、酱油、鸡翅、可乐;啤酒就是和花生米、小龙虾、黄瓜拉皮一起吃;比如方便面就是配火腿肠。这种是软规则。这些基于用户习惯的软规则,也能成为推荐的工具。比如做生鲜电商,可以一件件散着卖,也能打包一个“养秋膘火锅套装”把羊肉卷、汤底料、丸子、香菇等涮锅食材打包卖。
有些曾经不是规则,但是经过商家的宣传广告,植入进用户脑海的规则。比如女生各种化妆品,男生各种游戏皮肤、套装;比如最经典的:怕上火喝XXX;比如学数据分析要ESP套餐。这些是基于营销宣传的伪规则。虽然没有啥科学道理,但是用户能接受,就能成为推荐准则。
当然,还有最简单粗暴的,基于打折的惠规则。最简单的,用户加入购物车以后,发现自己已经买了400,还有一张满500减100的券能用。这时候用户急着找的就是“哪里有不鸡肋的100元东西可以买”。很有可能她会选纸巾、沐浴露、米面油这种能存放的硬通货。
这些都是业务方能发挥主观能动性创造出的规则。所以请同学们牢记,并转发给业务方看:不存在一个不用你努力,就静静躺在数据库里等着被你的数据分析师发现的神秘力量。在2020年,没有谁家的产品是100%独特的,想业绩做的比别人好,关键是自己得努力做。
当然,业务方想发挥主观能动性,也是需要数据支持的(如下图):
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15