京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:接地气的陈老师
来源:接地气学堂
一提人工智能大数据,必有人提啤酒与尿布,有意思的是,都2020年了,还有人信这个老掉牙的都市传说。今天我们系统讲解一下。
1 站在背后的关联规则
支持啤酒与尿布故事的,是关联规则算法。注意:关联规则算法本身没啥问题,这是一种发现关联关系(注意:不是因果关系哦)的手段,并且它的算法原理非常简单,需要的数据也非常少,因此适用范围非常广。
假设有6种产品,ABCDEF,一个客人买了AB去结账,收银员打出一张小票,上边有AB产品的名称、价格,我们可以用0、1代表是否有该商品,简单把小票表示成:
类似地,如果有5张订单,可以表示成:
注意,即使没有计算,用肉眼也能看到,似乎ABC三个产品在订单里同时出现的几率很高,这就是关联规则的基本思路:找到同时出现频率高的组合。只不过,我们需要用一些指标来衡量:到底什么算高。
因为有六个商品,所以同时出现的组合有很多种:A+B,A+B+C等,我们从最简单的两两组合开始计算,再算三三、四四……计算组合的时候,我们希望组合出现的频率越高越好,因此有了支持度概念:
两个商品的购买可能有先后顺序,比如先A后B,这时候可以算购买A的情况下,用户购买B的概率,从而决定在用户购买A以后推B产品,或者是C、D产品。因此引入置信度概念:
注意,虽然算出来购买A以后有75%概率购买B,但是不一定非等到用户买A再推荐B。如这个小例子里,直接推B也有80%购买率,显然非等到买了A再推B会很不划算,购买率还跌了,因此引入提升度概念:
支持度、置信度、提升度的计算都很简单,理论上,只需要设定支持度与置信度的要求,之后按一定顺序遍历所有组合(比如Apriori算法),即能找出所有符合条件的组合。这种方法最大的优势就是简单,计算方法、计算逻辑都简单,且需要的数据很少,只要有订单数据即可,数据采集永远是算法的头号大敌,一个需要数据少的方法,自然会被极其广泛的运用。特别是应用于购物篮分析。
然而,运用归运用,你真在哪个超市见过啤酒与尿布堆在一起的吗。很快讲故事的人便发现了这个bug,于是改口说:国外的超市……欺负大家出国少呀。那事实的真相到底是啥呢?
2 为啥现实中不存在
很遗憾,啤酒与尿布在现实中不存在。首先因为啤酒与尿布是teradata公司的销售编出来的故事。它完美符合了卖科技产品需要“意料之外,情理之中”的讲故事原则,因此才流传广泛。在实际运用的时候,无论是技术上还是业务上,类似“啤酒与尿布”的完美案例都不存在。
从技术上看,关联规则作为一种无监督找规律方法,更适合做探索性分析,不太适合直接指向一个可落地的SKU组合。注意,上边的例子是高度浓缩的,所以看起来简单可行。比如啤酒,实际上还包含了品牌、包装、价格、是否促销、是否临近保质期等众多因素。实际上SKU极其庞大,且单个SKU的数据非常零散。
如果只笼统地用“啤酒”这个大品类做关联,得出的数据几乎没啥指导意义。如果细到某一个具体价位具体保质期的SKU, 比如“Corona/科罗娜啤酒330ml*24瓶178元非折扣非临期”与“宝适绿帮纸尿裤S164新生婴儿超薄透气干爽款155元”单个具体SKU之间的支持度和置信度都非常低,很难达到落地的程度。
这是导致啤酒与尿布不会出现在超市里根本原因。随便一个3米5门头的小超市尿布至少几十款,啤酒至少几十款,到底哪个该摆在一起!还要考虑啤酒的冷藏问题,总不能在冰柜里放尿布吧。至于几百上千平米大超市,啤酒SKU数几千款,尿布几千款,货架长达数十米,只能分开放在酒水饮料区和母婴用品区。这俩摆在一起,肯定被商场主管活活殴打致死。
从业务上讲,关联规则同所有数学、统计学模型一样,只能说明两个数字之间有关联关系,无法论证任何实际意义上逻辑关系。“妈妈们买尿布的时候会顺便给爸爸买啤酒”的解释,完全就是为了圆故事而圆故事。如果真站在买尿布的妈妈的角度,她有100个理由去买更更值得买的东西,比如干纸巾和湿纸巾。给BB换过尿布的人都知道,那纸巾用起来简直像泼水一样快。有更直接、更明确的驱动力存在,为啥要舍近求远。
3 现实中是怎么玩的
本质上,消费者的决策是多因素的,生理性需求,认知层次,产品价格,材质,广告、宣传、都会影响消费者最终决策。因此想带动关联销售,方法多的很。
最直接的,基于业务规律的推荐,也就是俗称的硬规则。比如有的书就上中下册,拆开了就是没头没尾;有的药就是要一起吃,乱吃会死人。这些商品有固定的规律。这时候就不需要看数据,而是根据业务规律直接做推荐。
有些不是硬规则,但是是人们约定俗成的习惯。比如出去烧烤,就是需要碳、炉子、签子、酱油、鸡翅、可乐;啤酒就是和花生米、小龙虾、黄瓜拉皮一起吃;比如方便面就是配火腿肠。这种是软规则。这些基于用户习惯的软规则,也能成为推荐的工具。比如做生鲜电商,可以一件件散着卖,也能打包一个“养秋膘火锅套装”把羊肉卷、汤底料、丸子、香菇等涮锅食材打包卖。
有些曾经不是规则,但是经过商家的宣传广告,植入进用户脑海的规则。比如女生各种化妆品,男生各种游戏皮肤、套装;比如最经典的:怕上火喝XXX;比如学数据分析要ESP套餐。这些是基于营销宣传的伪规则。虽然没有啥科学道理,但是用户能接受,就能成为推荐准则。
当然,还有最简单粗暴的,基于打折的惠规则。最简单的,用户加入购物车以后,发现自己已经买了400,还有一张满500减100的券能用。这时候用户急着找的就是“哪里有不鸡肋的100元东西可以买”。很有可能她会选纸巾、沐浴露、米面油这种能存放的硬通货。
这些都是业务方能发挥主观能动性创造出的规则。所以请同学们牢记,并转发给业务方看:不存在一个不用你努力,就静静躺在数据库里等着被你的数据分析师发现的神秘力量。在2020年,没有谁家的产品是100%独特的,想业绩做的比别人好,关键是自己得努力做。
当然,业务方想发挥主观能动性,也是需要数据支持的(如下图):
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28