
作者:丁点helper
来源:丁点帮你
前面两篇文章初步介绍了生存分析基本入门的内容,今天我们来看看实际应用中怎么估计生存率。具体的方法和术语我们先不讲,首先来看例子。
案例:为了解肺癌患者接受某种治疗后的生存状况,研究者收集了12名肺癌患者手术加化疗的住院资料。他们的生存时间(月)分别为:2, 5, 8, 9, 9+, 10, 13, 13, 15+, 18, 20, 23+。
试问,采用该治疗方案的12名患者的术后生存率如何?(案例来自相关教科书,有删改)
如何来评判这种治疗方法的生存率呢?我们从“生存数据”入手,关于生存数据的详细解释大家可以看第一篇文章。
今天的文章我们来一步步搞懂上面这张表。
案例中介绍了,一共有12名住院患者,他们的生存时间(用 t 表示)分别为:2, 5, 8, 9, 9+, 10, 13, 13, 15+, 18, 20, 23+,单位是月。第一个问题,有些数字有加号,有些没有,是为什么呢?
有加号的表示,该数据是“删失数据”,什么是删失数据?(以及什么是完全数据?)可以看第一篇文章。这里简单理解就是,患者失联了,后续的信息无法获取。
比如上面的生存时间数据中有一个“9+”,可以理解为,跟踪了9个月,患者一直存活且保持着联系,可是当下一次(比如第10个月开始)去找他的时候(专业名词叫“随访”),找不到了,说的不好听一点,是死是活不知道。
因此,对于这样的数据,我们就叫“删失数据”。由于患者确实可能还活着,只是失联,谨慎起见,我们就在上一次随访的数据“9”后面加一个“+”,表示他存活的时间可能长于9个月。
其他的删失数据也这样理解。搞懂删失后,我们再来看这个表。表格的第(1)列序号代表什么呢?排序的号码!
将上面12名患者的生存时间t 从小到大排序并编号。
——注意两点:
第一,完全数据和删失数据要用不同的编号,比如上面的“9”和“9+”一个是编号“4”,一个是编号“5”,完全数据列在删失数据前面;
第二,其他情况下,相同的生存时间编号相同,比如上面有两个“13”,所以都编为“7”。
编号完成后,就把相应的生存时间排进去,见上表第(2)列。
这里大家需要熟悉一些表达,比如t₁=2、t₂=5 ... 就是指随访的第一个时间点是2个月,随访的第二个时间点是第5个月。
接着往后看,第(3)列是“死亡例数”,就是指在这个时间段的死亡人数是多少?
比如在第一个时间段内( t₁=2 )有1名患者死亡,就表示为:d₁=1;
同理,在第二个时间段内也有1名死亡(注意是: t₁~ t₂,就是2月末到第5月末),表示为:d₂=1;
后续依次类推,这里需要注意的是,“死亡例数”记录的是某个特定的时间段内的死亡人数,不是累计的死亡人数。
表格中第(4)列称作“删失数据”,就是记录那些带“+”号的数据的,可以发现,上面每一个删失数据都单独做一例录入。
第(5)列“期初人数”就与上面“死亡例数”相对应,就是指这个观察期开始时的人数。
第一个数( n₁)是“12”,就表示刚开始观察的人数是12人。
随着观察时间的延长,有患者死亡,就算作是一期。比如,到第2月末时,有1名患者死亡,那么下一个观察期的“期初人数”就是 12-1 = 11,因此: n₂=11,到第5月末时,又一名患者死亡,第3期(i = 3)“期初人数”就是 11-1 = 10,表示为: n₃=10。
后面的以此类推,由此我们可以得出一个计算公式:
后面两列——死亡概率和生存概率也很好理解,只有一点,就是要明白这里计算的概率都是以一期为单位的,而不是累积的。
比如第一期( i=1),一名患者死亡,所以,死亡概率就是:1/12;对应的生存概率就是:1-1/12。
第二期( i=2),也有一名患者死亡,死亡概率:1/11; 生存概率:1-1/11。
需要注意,这里的分母变成了11。原因还是:这里是以每一期为一个单位,计算时,都以该期的“期初人数”为分母。
搞清楚了死亡概率和生存概率,终于迎来了我们的主角“生存率”。
这个生存率怎么计算?很简单,就是各期生存概率的乘积。
后面的依次类推,就是这么简单。
我们来验算一下,比如:
用计算器算一下,这个也可以口算,你发现了么?
至于为什么这里都要加一个“ ^ ”以及上表中最后一列“生存率的标准误”怎么理解和计算,我们留到下一篇文章。
以上我们估算生存率的方法教科书称为:Kaplan-Meier法,又称乘积极限法,可以简单记为K-M法。
其基本思想是:将所有观察对象的生存时间(包括删失数据)由小到大依次排列,对每个时间点进行死亡概率、生存概率和生存率的估计。
回顾上面的文章,是否就是这个过程呢?
K-M法一般用于观察对象数目较少的没有进行特定分组的资料(如同本例)。这样可以能够充分利用每条记录的信息,估计不同生存时间点的生存率。
以上就是今天的内容。我们可以看到,实际应用中生存率的计算并不难,就是几个概率相乘。
学习起来真正的难点是一整套数据的记录和整理方法,而且还出现“删失”这种看起来就头大的术语。
所以,处理生存分析,首先要按照我们今天文章的梳理过程,一步一步弄懂每一个的指标的意义,生存率的估计就水到渠成了。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20