
大数据时代下的税务工作新貌
大数据技术从诞生到今天,已经走过了第十个年头。技术的发展是以需求为前提的,十年间Hadoop生态系统从最初只能应对海量数据的批处理,到如今涵盖数据多维度统计分析和数据挖掘建模的方方面面,说明了数据处理需求更加细化也更加深入。这里的细化和深入是依托行业背景来讲的,数据也有属于自己的基因,它在不同行业中展现出来的特性是不同的,对其价值的挖掘必须要遵从其本身的特点和规律。
税务机关作为国家重要的职能部门,是国家财政收入支出体系中最重要的一环,随着信息化的不断深入,数据环境已经逐见成效。明略数据独树一帜的从数据应用和数据处理角度进入税务行业,在两年多时间里深入调研税务数据类型、维度、质量以及特征等方面属性,并贴合数据情况和税务业务痛点,总结出了税务大数据资产管理实施路径,经由基础平台建设、数据汇集、数据治理、数据应用、数据开放五个阶段来逐步挖掘税务数据价值。
2014年,明略数据助力四川省地方税务局开展税务大数据平台建设,目标是实现对税务数据资产的价值挖掘。经过项目一期双方的努力,已经建立大数据基础平台和数据上下载平台,阶段性完成数据处理能力和数据汇集能力建设。
项目二期规划了ETL可视化套件、数据资产可视化套件以及税源探查分析平台三个方面的内容,涉及税务数据资产管理中的数据治理和数据应用环节。
其中ETL可视化套件通过将传统数据仓库中ETL设计过程以一种友好的、图形化的、流程化的方式呈现给税务业务人员,使得数据加工过程实现去技术化和透明化。让此前被屏蔽在数据处理过程之外的税务人员清晰地看到数据从源数据到最终结果表的每一步,并借此调动他们的积极性,克服畏难情绪,实际参与到数据加工处理中去,一改过去数据处理需求只能求助于厂商的局面,打破数据处理的黑盒,将数据的业务含义和操作主动权交还到税务管理人员。
数据资产可视化套件以图形化的方式将大数据基础平台中的数据资产的元数据信息进行管理和展示。实际包含数据库与库、表与表之间的关联关系和血缘关系以及细化到数据库表字段的中文解释,同时结合金三的权限设置对税务人员自定义数据目前进行支持,使得数据管理的自由度和便利性大大提升。最终为税务人员提供一幅税务数据资产的全景图以及数据之间关系的展示图,帮助他们了解手里已有数据的真实情况,实时掌握数据资产变动情况。
税源探查分析平台以税源全信息检索、税源关系图谱、税源纳税额预测、税源涉税事件追踪等新型大数据应用为基础构建,目标是解决税务工作的痛点和难点。税源全信息检索以税源的手机号、注册地址、名称等为关键字对税源进行检索。税源关系图谱利用发票信息和互联网数据描绘出税源间的复杂关系。税源纳税额预测结合外部的银联商务刷卡数据对税源的营业额做估算,进一步预测出纳税额。税源涉税事件追踪通过将数据库中的信息还原为涉税事件,并结合外部数据对事件的合规性进行校验,同时还负责预测税源未来可能的涉税事件。
2015年末,云南国税在金税三期单轨上线稳定运行的基础之上,按照国家税务总局的要求开展电子税务局应用,目标铸造一个基于Openstack云计算和Hadoop大数据技术的数据交换、处理、存储平台,连接内外两个网络,提供PC(个人计算机)、APP(应用)、SA(服务号)三种访问入口,智慧服务经济社会、政府部门、社会大众、纳税(费)户、办税人员、税务人员等六类对象,具有全天候、全方位、全覆盖、全流程、全联通、全智能等六个显著特点的电子税务局。
在项目前期明略数据助力云南省国家税务局已经完成了Hadoop大数据基础平台以及Openstack云计算平台的搭建工作,并且部署了相关应用。下一步就是基于各个渠道的用户行为数据对用户特征进行多层次、多维度的感知和智能、主动的辨识,识别出用户的偏好和习惯,实行税源正向激励和反向监督,最终实行以用户为中心的税源精细化管理。
除上述客户外,明略数据还在其他多个税局积极参与数据平台建设工作,新型数据应用的探讨工作。随着各省市对涉税数据应用的认识加深,大数据时代下的税收工作正在发生极大的改变,数据的价值和潜力将得到更大的发挥,税务机关和技术厂商的关系也在围绕数据发生变化。大数据只是技术手段,双方的共同目标归根到底还是树立数据思维,优化数据环境,建立一致、统一、规整的税务数据资产管理体系,通过先进的科学分析帮助提升多种税务业务应用,实现智能化、精细化的税收管理方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01