京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:Mika
数据:真达
【导读】今天教大家用Python分析《沉默的真相》的17万条弹幕。距离上一部国产良心剧《隐秘的角落》刷屏还不到2个月,“秃头梗”、“爬山梗”还让人记忆犹新。紧接着又一部爆款国产剧来了,那就是最近口碑炸裂的《沉默的真相》。
同样是来自爱奇艺针对悬疑短剧的“迷雾剧场”,《沉默的真相》根据紫金陈的小说《长夜难明》改编,讲述了检察官江阳历经多年,付出无数代价查清案件真相的故事。
开播当天《沉默的真相》在豆瓣开分8.8分,随着剧集的播出,该剧口碑势不可挡,一路走高,播出六集后,豆瓣评分冲到了9.2分,成功超越了它的前浪《隐秘的角落》。要知道,这种高开高走的趋势,在国产剧里是非常罕见的。
许多网友在最初刷剧时根本不信自己会哭,结果看到大结局才发现,这也太好哭了吧,看到主角江阳的舍命燃灯,真的让人哭出兰州拉面…
那么这部《沉默的真相》到底为什么口碑能高开暴走?凭什么成为年度压轴国剧? 今天我们就用Python来带你解读。
01、豆瓣 9.2分!超越前浪《隐秘的角落》
上一部被称为年度爆款国剧的还是《隐秘的角落》,改编自紫金陈的推理小说--《坏小孩》,《隐秘的角落》一经播出就带着"小白船","爬山梗","秃头梗"热闹了一整个夏天。
在豆瓣已有78万余人进行评分,最终收官8.9分,是非常惊艳的成绩。
谁知仅过去2个月,又一部悬疑剧《沉默的角落》凭借着逆天的口碑火了!同样改编自作者紫金陈的小说《长夜难明》,一开播豆瓣就达到8.8分。随着播出分数越来越高,如今已有20万余人评分,高达9.2分,已经超过了前浪《隐秘的角落》。
豆瓣总体评分分析
近一步分析观众评分,我们发现:
92.8%的观众给出了五星满分,这口碑在国产剧中已经达到标杆的水准。
豆瓣短评词云
然后我们再看到豆瓣的短评词云。
我们可以看到,观众在短评中讨论最多的就是主角"江阳",他的坚定和执着真可谓可歌可泣。"演员的演技","剧情",对"原著"的还原度,都得到了广泛的认可与好评。
02、刷剧《沉默的真相》,17万条弹幕都在说些什么
那么刷剧时,大家都在说些什么呢?接下来我们用Python分析了《沉默的真相》前10集的视频弹幕,共计173226条。
前十集弹幕走势图
从图中可以看到,看剧时大家都特别爱发弹幕,前十集中:弹幕数量最多分别是第9集,第3集和第10集,最多一集弹幕数为18903条,弹幕最少的是第六集,弹幕数为15561条。
接着我们再看看剧中主要角色的弹幕词云:
江阳弹幕词云
由白宇饰演的江阳,原本年轻有为,但是为了探求真相坚持正义,付出了自己的生命。像"正义"、"厉害"、"演技"等都在词云中频频出现。
李静弹幕词云
关于谭卓饰演的李静,在刷剧时很多人都会联想到她在《延禧攻略》中高贵妃的角色。无论是从“高贵妃”到《我不是药神》中的刘思慧,还是这次的李静,谭卓的演技都让人有目共睹。
严良弹幕词云
从最初官宣影帝廖凡,就有不少观众表示冲着廖凡也得看《沉默的真相》,果不其然,剧集一播出,粉丝就夸他是“免检产品”,妥妥的~
张超弹幕词云
饰演张超的宁理老师是迷雾剧场的老朋友了,之前在《无罪之证》中他演的社会"丰田哥"人狠话不多,"反向抽烟"实在是太深入人心了。从《无证之罪》到《隐秘的角落》,再到《沉默的真相》,严良都换了三个人了,真是流水的严良,铁打的李丰田。
03、手把手教你,如何用Python分析弹幕
我们使用Python获取并分析爱奇艺《沉默的真相》前十集的弹幕数据,整个数据分析的流程分为以下三个部分:
1. 数据获取
关于爱奇艺的弹幕数据获取程序之前文章中已经做过阐述。
2. 数据读入和预处理
首先导入所需包,其中pandas用于数据读入和数据处理,os用于文件操作,jieba用于中文分词,pyecharts和stylecolud用于数据可视化。
# 导入库 import os import jieba import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image
将爬取的数据存放在data文件夹下,使用os操作获取需要读取的csv文件列表并循环读入文件。
# 读入数据
data_list = os.listdir('../data/')
df_all = pd.DataFrame()
for i in data_list:
if i.endswith('csv'):
df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0)
df_all = df_all.append(df_one, ignore_index=False)
print(df_all.shape)
(173226, 6)
弹幕数量一共有173226条,预览一下数据:
df_all['name'] = df_all.name.str.strip() df_all.head()
3. 数据可视化
——分集的弹幕数
代码解说:
repl_list = {
'第一集 ': 1,
'第二集': 2,
'第三集': 3,
'第四集': 4,
'第五集': 5,
'第六集': 6,
'第七集': 7,
'第八集': 8,
'第九集': 9,
'第十集': 10
}
df_all['episodes_num'] = df_all['episodes'].map(repl_list)
df_all.head()
# 产生数据 danmu_num = df_all.episodes_num.value_counts() danmu_num = danmu_num.sort_index() x_data = ['第' + str(i) + '集' for i in danmu_num.index] y_data = danmu_num.values.tolist() # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(xaxis_data=x_data) bar1.add_yaxis('', y_axis=y_data) bar1.set_global_opts(title_opts=opts.TitleOpts(title='前十集的弹幕数走势图'), visualmap_opts=opts.VisualMapOpts(max_=20000, is_show=False) ) bar1.render()
x_data = ['第' + str(i) + '集' for i in danmu_num.index] y_data = danmu_num.values.tolist() # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(xaxis_data=x_data) bar1.add_yaxis('', y_axis=y_data) bar1.set_global_opts(title_opts=opts.TitleOpts(title='前十集的弹幕数走势图'), visualmap_opts=opts.VisualMapOpts(max_=20000, is_show=False) ) bar1.render('../html/爱奇艺弹幕数走势图.html')
弹幕角色-江阳 词云图
# 定义分词函数 def get_cut_words(content_series): # 读入停用词表 stop_words = [] with open(r"stop_words.txt", 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: stop_words.append(line.strip()) # 添加关键词 my_words = ['廖凡', '严良', '白宇', '江阳', '谭卓', '李静', '宁理', '张超', '黄尧', '张晓倩', '奥利给' ] for i in my_words: jieba.add_word(i) # 自定义停用词 my_stop_words = ['真的', '这部', '这是', '一种', '那种', '啊啊啊', '哈哈哈', '哈哈哈哈', '我要'] stop_words.extend(my_stop_words) # 分词 word_num = jieba.lcut(content_series.str.cat(sep='。'), cut_all=False) # 条件筛选 word_num_selected = [i for i in word_num if i not in stop_words and len(i)>=2] return word_num_selected
# 获取分词结果 text1 = get_cut_words(content_series=df_all[df_all.name=='江阳']['content']) # 绘制词云图 stylecloud.gen_stylecloud(text=' '.join(text1), max_words=1000, collocations=False, font_path=r'C:\Windows\Fonts\msyh.ttc', icon_name='fas fa-heart', size=653, output_name='弹幕角色-江阳词云图.png')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22