
CDA数据分析师 出品
作者:Mika
数据:真达
【导读】今天教大家用Python分析《沉默的真相》的17万条弹幕。距离上一部国产良心剧《隐秘的角落》刷屏还不到2个月,“秃头梗”、“爬山梗”还让人记忆犹新。紧接着又一部爆款国产剧来了,那就是最近口碑炸裂的《沉默的真相》。
同样是来自爱奇艺针对悬疑短剧的“迷雾剧场”,《沉默的真相》根据紫金陈的小说《长夜难明》改编,讲述了检察官江阳历经多年,付出无数代价查清案件真相的故事。
开播当天《沉默的真相》在豆瓣开分8.8分,随着剧集的播出,该剧口碑势不可挡,一路走高,播出六集后,豆瓣评分冲到了9.2分,成功超越了它的前浪《隐秘的角落》。要知道,这种高开高走的趋势,在国产剧里是非常罕见的。
许多网友在最初刷剧时根本不信自己会哭,结果看到大结局才发现,这也太好哭了吧,看到主角江阳的舍命燃灯,真的让人哭出兰州拉面…
那么这部《沉默的真相》到底为什么口碑能高开暴走?凭什么成为年度压轴国剧? 今天我们就用Python来带你解读。
01、豆瓣 9.2分!超越前浪《隐秘的角落》
上一部被称为年度爆款国剧的还是《隐秘的角落》,改编自紫金陈的推理小说--《坏小孩》,《隐秘的角落》一经播出就带着"小白船","爬山梗","秃头梗"热闹了一整个夏天。
在豆瓣已有78万余人进行评分,最终收官8.9分,是非常惊艳的成绩。
谁知仅过去2个月,又一部悬疑剧《沉默的角落》凭借着逆天的口碑火了!同样改编自作者紫金陈的小说《长夜难明》,一开播豆瓣就达到8.8分。随着播出分数越来越高,如今已有20万余人评分,高达9.2分,已经超过了前浪《隐秘的角落》。
豆瓣总体评分分析
近一步分析观众评分,我们发现:
92.8%的观众给出了五星满分,这口碑在国产剧中已经达到标杆的水准。
豆瓣短评词云
然后我们再看到豆瓣的短评词云。
我们可以看到,观众在短评中讨论最多的就是主角"江阳",他的坚定和执着真可谓可歌可泣。"演员的演技","剧情",对"原著"的还原度,都得到了广泛的认可与好评。
02、刷剧《沉默的真相》,17万条弹幕都在说些什么
那么刷剧时,大家都在说些什么呢?接下来我们用Python分析了《沉默的真相》前10集的视频弹幕,共计173226条。
前十集弹幕走势图
从图中可以看到,看剧时大家都特别爱发弹幕,前十集中:弹幕数量最多分别是第9集,第3集和第10集,最多一集弹幕数为18903条,弹幕最少的是第六集,弹幕数为15561条。
接着我们再看看剧中主要角色的弹幕词云:
江阳弹幕词云
由白宇饰演的江阳,原本年轻有为,但是为了探求真相坚持正义,付出了自己的生命。像"正义"、"厉害"、"演技"等都在词云中频频出现。
李静弹幕词云
关于谭卓饰演的李静,在刷剧时很多人都会联想到她在《延禧攻略》中高贵妃的角色。无论是从“高贵妃”到《我不是药神》中的刘思慧,还是这次的李静,谭卓的演技都让人有目共睹。
严良弹幕词云
从最初官宣影帝廖凡,就有不少观众表示冲着廖凡也得看《沉默的真相》,果不其然,剧集一播出,粉丝就夸他是“免检产品”,妥妥的~
张超弹幕词云
饰演张超的宁理老师是迷雾剧场的老朋友了,之前在《无罪之证》中他演的社会"丰田哥"人狠话不多,"反向抽烟"实在是太深入人心了。从《无证之罪》到《隐秘的角落》,再到《沉默的真相》,严良都换了三个人了,真是流水的严良,铁打的李丰田。
03、手把手教你,如何用Python分析弹幕
我们使用Python获取并分析爱奇艺《沉默的真相》前十集的弹幕数据,整个数据分析的流程分为以下三个部分:
1. 数据获取
关于爱奇艺的弹幕数据获取程序之前文章中已经做过阐述。
2. 数据读入和预处理
首先导入所需包,其中pandas用于数据读入和数据处理,os用于文件操作,jieba用于中文分词,pyecharts和stylecolud用于数据可视化。
# 导入库 import os import jieba import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image
将爬取的数据存放在data文件夹下,使用os操作获取需要读取的csv文件列表并循环读入文件。
# 读入数据 data_list = os.listdir('../data/') df_all = pd.DataFrame() for i in data_list: if i.endswith('csv'): df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) print(df_all.shape)
(173226, 6)
弹幕数量一共有173226条,预览一下数据:
df_all['name'] = df_all.name.str.strip() df_all.head()
3. 数据可视化
——分集的弹幕数
代码解说:
repl_list = { '第一集 ': 1, '第二集': 2, '第三集': 3, '第四集': 4, '第五集': 5, '第六集': 6, '第七集': 7, '第八集': 8, '第九集': 9, '第十集': 10 } df_all['episodes_num'] = df_all['episodes'].map(repl_list) df_all.head()
# 产生数据 danmu_num = df_all.episodes_num.value_counts() danmu_num = danmu_num.sort_index() x_data = ['第' + str(i) + '集' for i in danmu_num.index] y_data = danmu_num.values.tolist() # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(xaxis_data=x_data) bar1.add_yaxis('', y_axis=y_data) bar1.set_global_opts(title_opts=opts.TitleOpts(title='前十集的弹幕数走势图'), visualmap_opts=opts.VisualMapOpts(max_=20000, is_show=False) ) bar1.render()
x_data = ['第' + str(i) + '集' for i in danmu_num.index] y_data = danmu_num.values.tolist() # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(xaxis_data=x_data) bar1.add_yaxis('', y_axis=y_data) bar1.set_global_opts(title_opts=opts.TitleOpts(title='前十集的弹幕数走势图'), visualmap_opts=opts.VisualMapOpts(max_=20000, is_show=False) ) bar1.render('../html/爱奇艺弹幕数走势图.html')
弹幕角色-江阳 词云图
# 定义分词函数 def get_cut_words(content_series): # 读入停用词表 stop_words = [] with open(r"stop_words.txt", 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: stop_words.append(line.strip()) # 添加关键词 my_words = ['廖凡', '严良', '白宇', '江阳', '谭卓', '李静', '宁理', '张超', '黄尧', '张晓倩', '奥利给' ] for i in my_words: jieba.add_word(i) # 自定义停用词 my_stop_words = ['真的', '这部', '这是', '一种', '那种', '啊啊啊', '哈哈哈', '哈哈哈哈', '我要'] stop_words.extend(my_stop_words) # 分词 word_num = jieba.lcut(content_series.str.cat(sep='。'), cut_all=False) # 条件筛选 word_num_selected = [i for i in word_num if i not in stop_words and len(i)>=2] return word_num_selected
# 获取分词结果 text1 = get_cut_words(content_series=df_all[df_all.name=='江阳']['content']) # 绘制词云图 stylecloud.gen_stylecloud(text=' '.join(text1), max_words=1000, collocations=False, font_path=r'C:\Windows\Fonts\msyh.ttc', icon_name='fas fa-heart', size=653, output_name='弹幕角色-江阳词云图.png')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10