京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现今,高学历人群日益增多,物以稀为贵的高学历光环淡去。无论本科生还是研究生,甚至博士生,求职竞争力都大不如前,就业压力越来越大。
据悉,自新中国成立以来,70多年的时间内中国累计培育了1000多万博士和硕士,2020年在学研究生将达300万,我国已成世界研究生教育大国。
教育水平是镜子的两面,中国高端人才的数量和质量提升的同时,亦反映出即便研究生学历含金量未降低,其竞争激烈的程度也已白热化。
我们已步入无法单凭学历取胜的时代,这种焦虑导致社会上出现了一批又一批的考证大军。在校考英语4级、英语6级、托福、雅思等,毕业后则关注各行各业那些被企业和求职者等共同认可的证书,如:CFA、CPA等。
证书确实是就业竞争力的加分项,但随大流却让一些人迷失了自我,其实证书只是为证明持证人拥有与证书相符的能力,如果没这份能力,证书会和学历一样失去光环。
——给考证大军的一些建议:
▷ 首先,考证要评估和梳理自身优势和特点,根据实际情况选择证书备考;
▷ 其次,要考察证书所在领域的长远发展及国家政策的倾向性,如:近来有高校取消了会计专业招生,这是否是个预警;
▷ 最后,考证切忌盲目,建议考证者先确定目标后,再勇往直前,走向人生的巅峰。
以大数据分析行业为例,科技日新月异让大数据的价值越来越明显,未来5年中国大数据行业人才需求将达到2000万人。
如此巨大的市场需求缺口,导致国内各行各业迫切需要从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
数据分析行业在国内虽是朝阳产业,但国内高校人才输出未成规模,无法完全满足市场需求,促使企业更注重数据分析人才的实操能力而非学历。
因此,数据分析行业蓬勃发展催生出CDA数据分析师认证,类似CFA、PMP、ACCA等快速崛起并成行业普遍认可的证书般逐步发展成长期而稳定的行业人才标准。
为提供更好的服务,2020年CDA认证考试全新升级,旨在为大数据和人工智能时代提供全社会普遍认可的数据分析专业人才标准!
为什么要考CDA数据分析师证书?
——认可度较高
CDA数据分析师认证是一套专业化、科学化、国际化、系统化的人才考核标准,分3个级别,证书涵盖各行大数据及数据分析从业者所需具备的技能,符合全球大数据及数据分析技术潮流。
CDA数据分析师认证由中成协会大数据专业委员会监管,是全国经国标委发布认定的数据分析师人才标准,考试通过可获CDA数据分析师中英文双证书。
1、由国际范围内数据科学领域行业专家、学者及知名企业共同制定,并每年修订更新(共识性);
2、根据数据科学专业岗设立的人才考核标准,与全球知名考试服务机构Pearson VUE合作,专家命题、评分公平、流程严格(专业性);
3、持证人享有CDA会员系列特殊权益,证书具备唯一性与防伪性,持证人可获电子徽章,加入Linkedin个人档案。证书3年1审,确保持证人实力与权益(权益性)。
由于政府、企业和从业者对CDA证书的认可度稳步提升,越来越多企业引进CDA证书作内部数据分析人才评定标准,CDA企业会员亦大幅增加,涵盖了中国银行、IBM大数据大学,中国电信,国家电网,德勤,CDMS、Oracle、德国云网、Meritdata、Big Data University等。
——认证标准
CDA是全球化的数据人才认证体系,由为IBM、华为等提供认证服务的全球测评行业杰出计算机化考试服务公司Pearson VUE提供考试服务,考生不仅考试更便捷,还将受益于Pearson VUE在全球的影响力。
通过CDA认证,来自各个领域的数据处理和分析人才得以证明其技能。Pearson VUE将采用随报随考技术为CDA考生提供服务,让考生能够随时就近预约考试。
升级后,CDA数据分析师认证考试实现了频次更高、考点更广,大幅提升了专业度、共识性与含金量,促进其全球化普及。
1. 报名时间
2. 考试地点
据相关数据统计,CDA考生已不再集中于一线城市,二三四线城市均有分布。结合市场薪资分布情况可见,非一线城市消费低薪资高,约一半CDA考生来自非一线城市。
对比求职市场数据分析职位,CDA持证人与非持证人的月薪,发现系统学习并获等级认证者月薪均高于未考证人群,且不局限于一线城市。
CDA Level I等级证书主要面向业务数据分析,属数据分析领域初级岗位,与之匹配为数据维护岗、数据分析师、数据赋能岗、BI工程师、数据开发岗。
CDA Level II等级证书分为数据挖掘和大数据方向,为数据分析领域的中级岗位,与之匹配为数据挖掘工程师、大数据分析师。
CDA Level III等级证书为数据科学,属于数据分析领域的高级岗位,一般为上市、国企等大型企业招聘岗,主要在北上广深一线城市。
——选择岗位多
领英2020年发布的新兴职业报告2显示,数据分析师正以超20%的年增长率高速增长。迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。
纯数据岗,孵化出数据工程师、数据科学家和人工智能专家等,职责主要集中在数据处理、业务建模、数据可视化、数据平台搭建,就职数据部门。
另外,企业数字化转型中,不同行业、不同岗位都对数据分析技能提出了要求,使得数据赋能岗位多样化,渗透各行业。
数据分析岗分工细、选择多等特性,也推动着CDA认证证书考生逐年攀升,近2届的增长率达40%。
截止2020年,CDA数据分析师持证者已遍布500强企业、科技独角兽、大型金融机构、国有企业、机关事业单位等。在大环境及宏观政策的影响下,预计会有更多数据相关的从业者和求职者考取CDA证书。
——入行门槛低
拿数据分析就业市场上两类主要的分类来说,纯数据岗学历涵盖从高职到博士,另一类数据赋能岗门槛包容性比纯数据岗更大。
不过,正因为缺少学历门槛的约束,企业想找到合适的对口数据分析人才,就不得不依靠行业内长期稳定形成的高含金量证书。所以,会有更多的考证大军,为了更好的未来,需要拿下这块敲门砖,来认证自身的数据分析能力。
从含金量、实力值等各方面来看,全新升级的CDA数据分析师认证考试,都是考证大军们非常好的选择之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25