
现今,高学历人群日益增多,物以稀为贵的高学历光环淡去。无论本科生还是研究生,甚至博士生,求职竞争力都大不如前,就业压力越来越大。
据悉,自新中国成立以来,70多年的时间内中国累计培育了1000多万博士和硕士,2020年在学研究生将达300万,我国已成世界研究生教育大国。
教育水平是镜子的两面,中国高端人才的数量和质量提升的同时,亦反映出即便研究生学历含金量未降低,其竞争激烈的程度也已白热化。
我们已步入无法单凭学历取胜的时代,这种焦虑导致社会上出现了一批又一批的考证大军。在校考英语4级、英语6级、托福、雅思等,毕业后则关注各行各业那些被企业和求职者等共同认可的证书,如:CFA、CPA等。
证书确实是就业竞争力的加分项,但随大流却让一些人迷失了自我,其实证书只是为证明持证人拥有与证书相符的能力,如果没这份能力,证书会和学历一样失去光环。
——给考证大军的一些建议:
▷ 首先,考证要评估和梳理自身优势和特点,根据实际情况选择证书备考;
▷ 其次,要考察证书所在领域的长远发展及国家政策的倾向性,如:近来有高校取消了会计专业招生,这是否是个预警;
▷ 最后,考证切忌盲目,建议考证者先确定目标后,再勇往直前,走向人生的巅峰。
以大数据分析行业为例,科技日新月异让大数据的价值越来越明显,未来5年中国大数据行业人才需求将达到2000万人。
如此巨大的市场需求缺口,导致国内各行各业迫切需要从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。
数据分析行业在国内虽是朝阳产业,但国内高校人才输出未成规模,无法完全满足市场需求,促使企业更注重数据分析人才的实操能力而非学历。
因此,数据分析行业蓬勃发展催生出CDA数据分析师认证,类似CFA、PMP、ACCA等快速崛起并成行业普遍认可的证书般逐步发展成长期而稳定的行业人才标准。
为提供更好的服务,2020年CDA认证考试全新升级,旨在为大数据和人工智能时代提供全社会普遍认可的数据分析专业人才标准!
为什么要考CDA数据分析师证书?
——认可度较高
CDA数据分析师认证是一套专业化、科学化、国际化、系统化的人才考核标准,分3个级别,证书涵盖各行大数据及数据分析从业者所需具备的技能,符合全球大数据及数据分析技术潮流。
CDA数据分析师认证由中成协会大数据专业委员会监管,是全国经国标委发布认定的数据分析师人才标准,考试通过可获CDA数据分析师中英文双证书。
1、由国际范围内数据科学领域行业专家、学者及知名企业共同制定,并每年修订更新(共识性);
2、根据数据科学专业岗设立的人才考核标准,与全球知名考试服务机构Pearson VUE合作,专家命题、评分公平、流程严格(专业性);
3、持证人享有CDA会员系列特殊权益,证书具备唯一性与防伪性,持证人可获电子徽章,加入Linkedin个人档案。证书3年1审,确保持证人实力与权益(权益性)。
由于政府、企业和从业者对CDA证书的认可度稳步提升,越来越多企业引进CDA证书作内部数据分析人才评定标准,CDA企业会员亦大幅增加,涵盖了中国银行、IBM大数据大学,中国电信,国家电网,德勤,CDMS、Oracle、德国云网、Meritdata、Big Data University等。
——认证标准
CDA是全球化的数据人才认证体系,由为IBM、华为等提供认证服务的全球测评行业杰出计算机化考试服务公司Pearson VUE提供考试服务,考生不仅考试更便捷,还将受益于Pearson VUE在全球的影响力。
通过CDA认证,来自各个领域的数据处理和分析人才得以证明其技能。Pearson VUE将采用随报随考技术为CDA考生提供服务,让考生能够随时就近预约考试。
升级后,CDA数据分析师认证考试实现了频次更高、考点更广,大幅提升了专业度、共识性与含金量,促进其全球化普及。
1. 报名时间
2. 考试地点
据相关数据统计,CDA考生已不再集中于一线城市,二三四线城市均有分布。结合市场薪资分布情况可见,非一线城市消费低薪资高,约一半CDA考生来自非一线城市。
对比求职市场数据分析职位,CDA持证人与非持证人的月薪,发现系统学习并获等级认证者月薪均高于未考证人群,且不局限于一线城市。
CDA Level I等级证书主要面向业务数据分析,属数据分析领域初级岗位,与之匹配为数据维护岗、数据分析师、数据赋能岗、BI工程师、数据开发岗。
CDA Level II等级证书分为数据挖掘和大数据方向,为数据分析领域的中级岗位,与之匹配为数据挖掘工程师、大数据分析师。
CDA Level III等级证书为数据科学,属于数据分析领域的高级岗位,一般为上市、国企等大型企业招聘岗,主要在北上广深一线城市。
——选择岗位多
领英2020年发布的新兴职业报告2显示,数据分析师正以超20%的年增长率高速增长。迫切的市场需求让数据分析岗呈现多元化面貌,主体可划分为纯数据岗和数据赋能岗。
纯数据岗,孵化出数据工程师、数据科学家和人工智能专家等,职责主要集中在数据处理、业务建模、数据可视化、数据平台搭建,就职数据部门。
另外,企业数字化转型中,不同行业、不同岗位都对数据分析技能提出了要求,使得数据赋能岗位多样化,渗透各行业。
数据分析岗分工细、选择多等特性,也推动着CDA认证证书考生逐年攀升,近2届的增长率达40%。
截止2020年,CDA数据分析师持证者已遍布500强企业、科技独角兽、大型金融机构、国有企业、机关事业单位等。在大环境及宏观政策的影响下,预计会有更多数据相关的从业者和求职者考取CDA证书。
——入行门槛低
拿数据分析就业市场上两类主要的分类来说,纯数据岗学历涵盖从高职到博士,另一类数据赋能岗门槛包容性比纯数据岗更大。
不过,正因为缺少学历门槛的约束,企业想找到合适的对口数据分析人才,就不得不依靠行业内长期稳定形成的高含金量证书。所以,会有更多的考证大军,为了更好的未来,需要拿下这块敲门砖,来认证自身的数据分析能力。
从含金量、实力值等各方面来看,全新升级的CDA数据分析师认证考试,都是考证大军们非常好的选择之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11