京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:伍正祥
来源:AI入门学习
今天教大家画一个图,桑基图,一个大大提高你的江湖地位的图。桑基图是一种流图,其实在前期文章中提到过,但是并没有讲细节的画法,现在教大家两种画法,一个是R语言(案例1、2、3),一个是直接在线画(案例4)。
案例1:你的工资是怎么霍霍的?
假如你月薪20000,你能拿到多少?最后花完还剩多少?可能比你想象的要少。一部分被国家拿走,当然国家并不是要你的钱,只是帮你存起来,等你长大了,不对,是老了会还给你的(此处我想起了压岁钱的故事),当然税收部分,那国家说了,强制征收,打死都不会给你的。国家的拿完了,然后扣除柴米油盐酱醋茶等一些列开支,你会发现,又回到了穷人的队伍。
以杭州为例,根据工资计算器,五险一金+所得税大约扣6000多,你能拿到13000多,为什么扣这么多,因为杭州公积金12%,所以欢迎大家来杭州发展。除掉五险一金,就是各项生活开支了,最后剩下不足4000了。说了这么多,数据怎么表达更直观,大部分网站都用二维饼图,在分类很多的情况下,饼图比较乱,其实桑基图会有更好的表现力,看具体的绘图步骤。
step1:数据准备,理清各类数据金额或者比例
step2:数据格式转换,宽格式的转换成3列,注意会汇总多一行或者多行
step3:可以把数字标签加到文本描述里面,准备好后,套用文末代码即可
工资是怎么样离你而去的
案例2:比赛数据样本量统计
比赛分为初赛和复赛,初赛复赛分别有训练集和测试集,在训练集中,有5个分类,存在各种交叉,用桑基图如下。
比赛数据样本量统计
案例3:手机各个渠道销售量统计
手机品牌商会在不同的渠道进行销售,不同渠道又会在不同的省份进行销售,用其他类型的图表表达都显得拥挤,但是桑基图恰到好处的表现出来了,可以在标签上加上各个渠道的占比。
某品牌手机各个渠道销售量统计
案例4:在线用Echart绘制桑基图
绘图思路及数据准备和上面一样,只要手动更改标签及数据,运行即可得到想要的图形,下面是原始的demo截图,非常简单。
案例5:其他作品欣赏(需要一些开发资源)
开头图代码:
URL <-'https://raw.githubusercontent.com/christophergandrud/d3Network/sankey/JSONdata/energy.json'
Energy <- jsonlite::fromJSON(URL)
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes, Source = "source", Target = "target", Value = "value",NodeID = "name",fontSize = 12, nodeWidth = 30)
案例123代码,只需要更换文件即可
library(networkD3)#安装并包加载,如果没有请安装
library(dplyr)
setwd("C:/Users/wuzhengxiang/Desktop/R语言可视化/Sankey")#文件的存储空间
sankey = read.csv("手机销售渠道统计.csv",header=T,stringsAsFactors = FALSE)#读取数据
Sankeynodes = data.frame(name = unique(c(sankey$Source,sankey$Target)))
Sankeynodes$index = 0:(nrow(Sankeynodes)-1)
Sankeylinks = sankey
Sankeylinks = left_join(Sankeylinks,Sankeynodes,by=c('Source'='name'))
Sankeylinks = left_join(Sankeylinks,Sankeynodes,by=c('Target'='name'))
Sankeydata = Sankeylinks[,c(4,5,3)]
names(Sankeydata) = c("Source","Target","Value")
Sankeyname = select(Sankeynodes,name)
sankeyNetwork(Links = Sankeydata,Nodes = Sankeyname, Source = "Source",Target = "Target", Value = "Value", NodeID = "name", units = "元", #根据具体单位填写, fontSize = 12, nodeWidth = 24,sinksRight = FALSE, colourScale = JS("d3.scaleOrdinal(d3.schemeCategory20);"))
图片中使用了大量的动图,有专门的小软件可以制作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25