京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
上一篇文章介绍了一般线性回归的典型操作,并且留了一个思考题。感谢小伙伴的参与,大家很厉害,没有被迷惑到,线性回归获得的系数代表的是相关关系,而非因果关联。
回归是相关不是因果
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
因为,回归的使用仅能说明数据之前存在关联,但这种关联是否真正代表了两者的内在联系还需要更深入的研究。
之所以采用回归分析,就是通过纳入多个自变量,达到控制混杂因素的作用,但是我们无法纳入所有可能的因素,即所谓的“遗漏变量”(omitted variables),从而导致回归的结果不准确。
例如,探究教育程度与收入的关系,如果我们在回归分析中没有纳入“父母的平均教育程度”这个变量,此时,这个变量就被称为“遗漏变量”。
根据常识,父母的教育程度应该是孩子未来收入的重要影响因素,同时也几乎决定了孩子的教育程度。因此,遗漏这个变量有可能让我们得出有偏差的结果(一般会高估个人教育程度对未来收入的影响)。
同时,如果X与Y之间的关系,不是X导致Y,而是Y导致X(称作“反向因果”),此时的回归分析也会得出有统计学意义的结果(总体回归系数不为0)。
但这个结果无法显示相关关系的方向,即无法判断是X→Y,还是Y→X,从而误导我们的判断。
例如,常有人说,一个国家保护私人产权制度越完善,这个国家就越富裕。
这意味着完备的产权促进了国家经济的发展,于是人们建议:贫穷的国家都要实施良好的私有产权保护。
不可否认,产权对提升经济发展的确有作用。但我们不能忽略这其中的反向因果。
也就是说,很有可能是一个国家富裕之后才开始注意产权保护,产权制度才会更加完善,由此,并非是产权促进了经济的发展,而是经济发展促进了产权的完善。
所以,我们不能只从两组数据的相关就推测因果,除了那些没有纳入考虑的变量,反向因果也有可能对我们进行误导。
由此来看,回归分析更像是一种探索,它提供某种线索,启示我们下一步的研究方向。
回归诊断——残差图
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
回归分析有时候之所以不能揭示因果,除了上面谈到的遗漏变量效应和反向因果外,某些假设条件的违反也会导致回归的结果不准。
所以,我们要牢记做完回归并不意味着万事大吉,进行必要的诊断性分析十分必要。
回归诊断,就是通过各种方法来验证回归分析的假设条件以及其他因素的影响,这里我们重点讲讲回归LINE条件的诊断和多重共线性的识别。
前文我们提到过做线性回归的时候一般需满足:线性、独立、正态、方差齐(LINE)条件。
对这些假设条件的诊断其实有各种各样的办法,其中一种使用十分广泛,简单易学,同时效率也比较高的做法是作残差图。
画残差图,一般是以回归分析Y的预测值为横轴,以残差为纵轴做散点图。
如果打开SPSS,可以看到回归分析模块中有很多种残差:未标准化、标准化、学生化等等。
简单起见,大家可以选择所谓的“学生化”残差。
不知有同学是否了解过,什么叫“学生化残差”?(不能再古怪了!)
实际上,它和我们前面学习的t检验还有联系。
t检验发明者的笔名就叫“学生”,即student,所以这里的“学生化残差”可以简单理解为一种t变换(与标准化,即z变换类似)。
具体的细节感兴趣的同学可以去查一查。在我们的具体应用中,采用“学生化残差”和“预测值”做散点图还是挺简单的,而且可以发现一些问题。
一条原则:如果线性回归效果较好,则残差图的各个散点会围绕着“残差=0”水平线上下均匀分布,如下图中的红线。
这可能是最简单的诊断方法,通过观察散点在上述红线上下的分布情况来推测回归分析的质量,同时提示需要改进的方向。
例如,下面这张散点图,就提示Y与自变量X之间可能存在某种曲线关系。
当增加某个自变量的二次项后,回归被改善。
没有添加任何二次项
增加x1的二次项,拟合效果提示
除此以外,线性回归诊断另一个常见的问题是,当自变量X之间互相存在高度相关性时,会导致回归方程估计结果不稳定,回归系数的标准误大大增加(可以通过数学公式证明,标准误计算的分母因为X之间的相关系数而变大,从而整个标准误变小),称为共线性。
共线性最大的问题是,导致本身有意义(P<0.05)的结果变为无意义(P>0.05)。
SPSS在线性回归分析模块也有专门的共线性诊断指标,我们在分析时点选即可:
根据上一篇文章中的例子,共线性诊断的的指标均在要求之内,提示共线性问题不严重。
最后,如果线性回归的LINE没有通过诊断分析,需要怎样改进呢?如下图,大家作为参考,这些内容后期有机会我们逐渐给大家讲解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15