作者:丁点helper
来源:丁点帮你
上一篇文章介绍了一般线性回归的典型操作,并且留了一个思考题。感谢小伙伴的参与,大家很厉害,没有被迷惑到,线性回归获得的系数代表的是相关关系,而非因果关联。
回归是相关不是因果
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
因为,回归的使用仅能说明数据之前存在关联,但这种关联是否真正代表了两者的内在联系还需要更深入的研究。
之所以采用回归分析,就是通过纳入多个自变量,达到控制混杂因素的作用,但是我们无法纳入所有可能的因素,即所谓的“遗漏变量”(omitted variables),从而导致回归的结果不准确。
例如,探究教育程度与收入的关系,如果我们在回归分析中没有纳入“父母的平均教育程度”这个变量,此时,这个变量就被称为“遗漏变量”。
根据常识,父母的教育程度应该是孩子未来收入的重要影响因素,同时也几乎决定了孩子的教育程度。因此,遗漏这个变量有可能让我们得出有偏差的结果(一般会高估个人教育程度对未来收入的影响)。
同时,如果X与Y之间的关系,不是X导致Y,而是Y导致X(称作“反向因果”),此时的回归分析也会得出有统计学意义的结果(总体回归系数不为0)。
但这个结果无法显示相关关系的方向,即无法判断是X→Y,还是Y→X,从而误导我们的判断。
例如,常有人说,一个国家保护私人产权制度越完善,这个国家就越富裕。
这意味着完备的产权促进了国家经济的发展,于是人们建议:贫穷的国家都要实施良好的私有产权保护。
不可否认,产权对提升经济发展的确有作用。但我们不能忽略这其中的反向因果。
也就是说,很有可能是一个国家富裕之后才开始注意产权保护,产权制度才会更加完善,由此,并非是产权促进了经济的发展,而是经济发展促进了产权的完善。
所以,我们不能只从两组数据的相关就推测因果,除了那些没有纳入考虑的变量,反向因果也有可能对我们进行误导。
由此来看,回归分析更像是一种探索,它提供某种线索,启示我们下一步的研究方向。
回归诊断——残差图
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
回归分析有时候之所以不能揭示因果,除了上面谈到的遗漏变量效应和反向因果外,某些假设条件的违反也会导致回归的结果不准。
所以,我们要牢记做完回归并不意味着万事大吉,进行必要的诊断性分析十分必要。
回归诊断,就是通过各种方法来验证回归分析的假设条件以及其他因素的影响,这里我们重点讲讲回归LINE条件的诊断和多重共线性的识别。
前文我们提到过做线性回归的时候一般需满足:线性、独立、正态、方差齐(LINE)条件。
对这些假设条件的诊断其实有各种各样的办法,其中一种使用十分广泛,简单易学,同时效率也比较高的做法是作残差图。
画残差图,一般是以回归分析Y的预测值为横轴,以残差为纵轴做散点图。
如果打开SPSS,可以看到回归分析模块中有很多种残差:未标准化、标准化、学生化等等。
简单起见,大家可以选择所谓的“学生化”残差。
不知有同学是否了解过,什么叫“学生化残差”?(不能再古怪了!)
实际上,它和我们前面学习的t检验还有联系。
t检验发明者的笔名就叫“学生”,即student,所以这里的“学生化残差”可以简单理解为一种t变换(与标准化,即z变换类似)。
具体的细节感兴趣的同学可以去查一查。在我们的具体应用中,采用“学生化残差”和“预测值”做散点图还是挺简单的,而且可以发现一些问题。
一条原则:如果线性回归效果较好,则残差图的各个散点会围绕着“残差=0”水平线上下均匀分布,如下图中的红线。
这可能是最简单的诊断方法,通过观察散点在上述红线上下的分布情况来推测回归分析的质量,同时提示需要改进的方向。
例如,下面这张散点图,就提示Y与自变量X之间可能存在某种曲线关系。
当增加某个自变量的二次项后,回归被改善。
没有添加任何二次项
增加x1的二次项,拟合效果提示
除此以外,线性回归诊断另一个常见的问题是,当自变量X之间互相存在高度相关性时,会导致回归方程估计结果不稳定,回归系数的标准误大大增加(可以通过数学公式证明,标准误计算的分母因为X之间的相关系数而变大,从而整个标准误变小),称为共线性。
共线性最大的问题是,导致本身有意义(P<0.05)的结果变为无意义(P>0.05)。
SPSS在线性回归分析模块也有专门的共线性诊断指标,我们在分析时点选即可:
根据上一篇文章中的例子,共线性诊断的的指标均在要求之内,提示共线性问题不严重。
最后,如果线性回归的LINE没有通过诊断分析,需要怎样改进呢?如下图,大家作为参考,这些内容后期有机会我们逐渐给大家讲解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03