
浅析大数据与BI的区别,教你迅速把握大数据的精髓
大数据(Big Data)是从收集的海量数据中,通过算法将这些来自不同渠道、格式的数据进行直接分析,从中寻找到数据之间的相关性。简单而言,大数据更偏重于发现,以及猜测并印证的循环逼近过程。
不管定义如何不同,大数据与传统BI是社会发展到不同阶段的产物,我们从几下几个纬度来可以迅速的看出两者的区别:
第一、从数据来源角度
大数据应用的数据来源,不仅仅包括非结构化的数据,还有各种系统数据,数据库数据。其中非结构化数据主要是集中在互联网以及一些社交网站上的数据以及一些机器设备的数据,这些都构成了大数据应用的数据来源。对于大数据的分析工具来说,现阶段也是对于非结构化的数据分析的比较多。
BI系统则是在数据集成方面的技术越来越成熟,对于数据的提取,一个各种数据挖掘的要求来说,数据集成平台会帮助企业实现数据的流通和交互使用,在企业内部实施BI应用就是为了可以更好的对数据进行分享和使用。
第二、从思维方式角度
大数据对于传统BI,既有继承,也有发展,从‘道’的角度讲,BI与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。
第三、从发展方向角度
BI的发展要从传统的商务智能模式开始转换,对于企业来说,BI不仅仅是一个IT项目,更是一种管理和思维的方式,从技术的部署到业务的流程规划,BI迎来新的发展。对于大数据来说,现阶段更多的大数据关注在非结构化数据,不同的数据分析工具的出现和行内的应用范围不断的加大,对于大数据应用来说,怎么与应用的行业进行一个深层次的结合才是最重要的。
第四、从工具的角度
传统BI使用的是ETL、数据仓库、OLAP、可视化报表技术,属于应用和展示层技术,目前都处于淘汰的边缘,因为它解决不了海量数据(包括结构化与非结构化)的处理问题。而大数据应用的是一个完整的技术体系,包括用Hadoop、流处理等技术解决海量的结构化、非结构化数据的ETL问题,用Hadoop、MPP等技术计算海量数据的计算问题,用redis、HBASE等方式解决高效读的问题,用Impala等技术实现在线分析等问题。因此是个全新的行业。
第五、从人员的角度
传统BI只要掌握核心的SQL技术就可以从事BI的工作,而大数据的数据处理,涉及太多新的技术,不同的应用场景需要不同的大数据处理方法了,而且不再有人机交互那么好的客户端了,至少要懂流处理、HADOOP、列式或分布式键值数据库吧,还需要能在SPARK上开发算法程序,对于用户画像、产品标签化、推荐系统、排序算法都应有所理解。
因此,大数据相对于传统BI,不是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI工作人员应该尽快顺应大势,更新自己,奋起直追,重装上阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15