
决策者们别被舆情大数据忽悠了
近两年大数据真的很热,但一个过热的现象就一定会有很多误区,很多人看了是网上海量数据“淘”出来的分析就认定了是“真理”,深信不疑,其实这里头很可能埋伏了误区,使用不慎会误导决策。
那大数据能做什么?不能做什么?
大数据当然很有用,最明显的就是茫茫网海中找一个人或一小群人,“人肉”的威力我不再赘述了。
其次,我想找一个商机,如果在大数据中挖出一百万人表达对某一“产品”的关注,这绝对会有足够的消费者,让产品赚钱,所以大数据的商业应用前景十分光明。
再来,如果只是描述性统计和相关性分析,不作任何推论,往往也十分靠谱。但是往往这样的分析只作归纳不作演译,在很多时候是不敷应用的,尤其是决策者对宏观世界知识的需求,使得大数据分析者会急于对大数据挖掘出来的结果作推论。
比如,我们如果说网上交易数据发现某某地区网上消费者对某一产品需求近三个月成长五成,就很有用,如上面所述,它马上反应了一个商机。但是我们如果说某一地区一成的网民,占4%居民数,其中八成是低学历男性,一成在谈及某一政策时用了“赞”,大概这样的描述,虽靠谱,却对政策决定者没什么用。所以不经过推论,很多大数据挖掘出来的东西会没什么用。
如果数据本身就是母体而不是样本,其统计分析是可以作出诠释的,这是推论的第一步。比如,我参予过微博转发研究,用一段时间内所有微博资料来分析,它本身就是微博转发的所有资料,而不是抽样,所以用数据挖掘出来的发现作诠释,尤其是和理论相稳合的诠释,可信度还是不错的。但注意,诠释可以作出理论的假设,需要进一步资料的验证,诠释本身却不能当作“真理”、“法则”和“事实”。
不作推论大数据有时没用,但一推论就可能掉入很多误区,决策者基于错误的知识作决策,会带来十分严重的后果。那么有那些推论的误区呢?以我们常看到的一些“舆情分析”或“偏好分析”为例,往往大数据挖掘出“某某地方(或某某群人)对某一事物有多高的百分比表示喜欢(或支持)”,这一分析结果就有五大误区可能使这样的“结论”偏误极大。
一、抽样偏误。这是最显而易见,而且是很多人都注意到的,上网的人不等同某一地区或某一群体的所有的人,他们在年龄、教育、社会阶层、婚姻状态等等的社会属性上都和平均数有一定的差距。退一步说,说这是网民的“舆情”或“偏好”,也不准确,因为对一个事件表达态度的人又只是很小一部分的网民,这也只是大数据中找出来的“样本”,不足以推论所有网民。
二、情绪字词衡量偏误。要判断一个网民针对某一事件中表达的一段话是“支持还是反对”某一立场或“喜欢还是不喜欢”某一人或事,我们会抽取出其中的一些字词,或一小段字词,判断这些字词的属性,符合那一类情绪基模。我曾和美国心理学家合作过一百零七个汉字字辞在中国社会中的情绪定位,方法上是让一定数量,数十上百位,心理学受测者,每个人在电脑问卷上就出现在眼前的字辞表达情感的三个维度,EPA,评价(Evaluation)、情绪强度(Potency)以及引发行动程度(Activity),再由这三个维度平均值判断出这一字词在中国人中来自于什么样的情绪。任何衡量字词相应情绪的方法不免还是会有偏误,但是在我看到一些国内使用的衡量中,三五个人主观地判断就为很多字词作好情绪归类,这显得十分粗糙,衡量偏误又大的多了。
三、转化偏误。一段网民的话中可能会有一个到数个可以抽取出来的字词,每个字词表达了中国人情绪的EPA三维度,每一维度都是从+3到-3间无限多的刻度来表达,但最终我们却要从这一句话中判断出一个“支持不支持”的立场或“喜欢不喜欢”的态度。所以从这么多复杂衡量的字辞到简单两分的结果,需要一个转化的模型,甚至不同类别事物的情绪表达需要不同的转化模型。但如今国内的很多大数据挖掘,其转化模型只是粗糙的处理,缺乏理论基础,这又会加大偏误。
四、情绪感染偏误。网上发言情境中常常会有一群相同立场的人抱团,在一定的舆论阵地中党同伐异,这会影响有些后续发言者隐藏自己的立场,采用趋同言论,以免犯了众怒。这又会使网上表达有时不能真实反应一个人的偏好,在一个人冷静独处时会有不同的表达,因而产生因情绪感染而有的偏误。
五、最后一类的偏误我称之为资料被截的偏误(truncated databias),就是很多行为,越是重要的,特别值得研究的,牵涉到信任感强的行为,其实网上表达的只是冰山水面上的部分,大量行为是在网下的,因此资料是被截的(truncated)。比如我在从大数据中算一个人人脉网时,网上资料较易看出弱连带,但是算强连带却会有很大的误差,因为强连带中大多数亲密行为是发生在网下的,这一部分网上不一定能察觉到。同样的,一些较敏感的立场,大多数人较不愿表达的偏好,以及较机密的信息,都不会上网,除非像毕姥爷一样被偷拍上网了,否则大数据是挖掘不到的。如何从已有的网上资料去推论网下被截的部分,是一个重大而困难的研究,但可以减少truncated data造成的偏误。
基于这五类推论时产生的偏误,使我们想直接从大数据挖掘结果推论出我们想知道的知识时,常常是以偏概全的,据以作出决策,不免大错特错,不得不慎。但大数据有一个优势,就是很容易收到惯时性资料,虽然是“偏”的,但长时间“偏”的资料的趋势有时可以看出未来的端倪,过了“引爆点”, 趋势就能形成,形势就不可逆转,大数据的分析会事先提供极为重要的警讯。比如,台湾“太阳花运动”就是从“反服贸懒人包”开始,虽然其中包括了很多错误而扭曲的信息,你可以骂大量台湾年轻人知识贫乏没有国际观,但它就是能让很多人相信,一旦变成“普遍知识”时,马英九政府想辟谣也来不及了。
有时“引爆点”只要百分五的人口,网民也就是百分之十,便足以引爆趋势,从网上漫延到网下,势不可挡。当然这种研究还有很长的路要走,急急忙忙就宣称自己找到了“大趋势”的,怕又是忽悠的成份居多。
大数据很有用,但也是双刃剑,滥用误用会产生重大决策的错误,现在大数据相关经费多,出了一堆又一堆的专家,决策者使用这些专家的挖掘结果时不能不慎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27