
案例分享:美国联邦机构利用大数据的五个案例
大数据已经渗透到各行各业,比如:金融、医疗、政府、教育、能源等等,下面是美国联邦机构利用大数据助力的五个案例分析和总结。
例1:大数据技术如何助力欺诈检测和金融市场分析
美国社会保障局(SSA)利用大数据策略来分析大量的非结构化伤残索赔数据。SSA现在能够更快、更高效地处理医学分类和预期诊断 , 重塑整个决策过程,更好地识别可疑的不实索赔。
美国联邦住房管理局(FHA)在利用大数据分析来管理正向现金流基金方面拥有23年的经验。在房地产泡沫破裂期间,FHA 是唯一一家不需要救助的次贷保险机构。他们运用大数据分析来帮助预测违约率、偿还率和索赔率。另外,他们还利用大数据技术为可能出现的场景构建现金流模型,以确定维持正向现金流所需的保费。
美国证券交易委员会(SEC)运用大数据策略来监督金融市场活动。他们利用自然语言处理程序和网络分析来帮助识别违规交易活动。
例2:大数据技术如何助力健康相关研究
美国食品药物管理局(FDA)在全国各地的很多测试相关实验室里都部署了大数据技术,以便研究食源性疾病的模式。这套数据库属于该机构的技术转让项目,能让 FDA 更快地对进入食品供应的受污染产品作出反应,这类产品在美国导致每年有32.5万人因食源性疾病住院治疗,3000人死亡。
美国国立卫生研究院(NIH)在 2012 年启动了‘从大数据到知识’(BD2K)计划。BD2K 是一项不仅限于该院的计划,旨在使生物医学研究成为一项数字研究事业,促进新知识的发现和运用,最大程度地提升社会参与度。从生物医学大数据中获取丰富信息的能力,将增进我们对人类健康和疾病的了解。然而,适当工具的匮乏、糟糕的数据可达性和培训的不足妨碍了我们有效地整合研究力量。BD2K 将帮助 NIH 应对这个挑战。
美国医学研究所(IOM)和卫生及公共服务部(HHS)在2010年3月召集了一小群来自白宫、联邦机构、学术界、社会部门、公共卫生团体、信息技术公司、大企业和医疗服务系统的领导者,商讨新的社区健康数据计划的建立事宜。2010年6月,IOM 和 HHS 举办了‘社区健康数据论坛:利用信息的力量来改善健康’。此次公共论坛的目的是进一步推动创新者对社区健康数据的使用,让个人和社区都能为自身的健康做出明智的选择。这些初始会议现在已经发展成为正式的全国性大会 HealthDatapalooza ,致力于开放健康数据,将企业、初创公司、学者、政府机构和个人联合起来,通过对健康数据的开创性和有效利用,改善患者的健康状况。
例3:大数据技术如何助力政府监督和教育
通告和评论项目(Notice andComment project) 使公众可以方便快捷地查看400多万份政府文件,包括《联邦公报》(FederalRegister)发表的联邦法规和地方政府发布的通告。该项目利用先进分析和自然语言处理来摄取政府文件,追踪政策、法律和规章的变化。用户可以轻而易举地对拟订中的联邦法规进行评论或投票。网站数据每天都会更新,实时显示新的提案和趋势。在提案变成法律之前,用户可以利用网站内部集成的社交媒体和网上的最佳写作技巧来有效地宣扬他们的观点,寻求其他人的支持。
美国教育部利用大数据挖掘和学习分析来改善教学。美国教育部教育技术办公室表示:‘大数据分析能够发现学习在线课程的学生是否走入误区,并帮助他们调整方向。这些先进分析还有可能根据按键点击模式判断学生是否对当前课程感到无聊,然后重新获取他们的注意力。由于这些数据是实时收集的,因此很有希望通过多个反馈回路实现持续改善。这些反馈回路的时间跨度不一--对学生来说是立刻思考下一个问题,对老师来说是每天安排第二天的教学,对校长来说是每月评估进展,对地方官员来说是每年评估总体的学校教育改善情况。’
例4:大数据技术如何助力打击犯罪
美国国土安全部(DHS)是证明公共部门需要大数据策略的好例子。该机构的组织形式突显了在许多政府机构之间进行数据互通和整合的必要性。DHS 不仅提供了很多如何进行有效整合的例子,也提供了很多如何更加成功地实现数据互通的经验教训。
美国各地的州和地方执法部门在运用大数据策略方面有不少亮点。波士顿马拉松爆炸案 的侦办就是很好的例子。大数据技术让警方得以快速分析48万多幅图像。这些图像即为非结构化数据。对嫌疑犯的详细描述使分析人员可以撰写代码和算法,对图像进行迅速分析,寻找异常情况和特定模式。从传感器信息中自动筛查犯罪行为令实时分析得以实现,缩短了决策时间,减少了接触敏感数据的人员或系统数量。
例5:大数据技术如何助力环保和能源勘探
美国国家航空航天局(NASA)和美国林务局(U.S. Forest Service)几年来一直在努力加强数据互通和研究合作,让自己可以更准确地预测天气、土壤状况和森林火险。这项努力在数据要求和数据治理的协调方面事先下了很大功夫。除了先进的技术以外,还需要相关人员更好地理解问题和协调可用数据的使用,以制定出一套整体策略。
深水地平线(Deep WaterHorizon)钻井平台漏油事故的应对措施就是依靠大数据互通来阻止原油泄漏,遏制污染物,对损害作出响应。私营部门和公共部门合作,在两周内就完成了数据的整合,使各个工作组可以分析天气、海洋和植物数据。大数据技术被用来预测哪些区域可能受到影响,并帮助确定应该向哪里派遣清理人员。
美国国家大气研究中心(NationalCenter for Atmospheric Research)制定了一套大数据策略,将公用事业单位、大学和能源业的研究和数据整合起来,以便更准确地预报天气和预测能源的供应与需求。通过研究天气和大气模型,分析师可以让可再生能源的生产和使用变得更加可靠和高效。他们把数据纳入天气实时分析模型,揭示能源生产和能源需求的重要信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15