
大数据对刑事法律研究和实践的作用
近年来大数据的概念在全球范围内广泛传播,大数据的挖掘和应用在各行各业内被实践。信息技术的发展以及司法信息的公开化,使得大数据与法律行业的结合成为可能。企业家刑事风险防控与辩护也需要与大数据结合。企业家刑事风险的爆发,往往集中于企业发展的高峰时期,不仅影响着企业的可持续发展乃至生死存亡,还影响国民经济的平稳发展和社会稳定。而企业家犯罪原因很多,更需要对多个个案进行归纳、总结,从而找到更加有效的辩护之道和防控方法。
我国法律大数据的现状
大数据是指用现有的一般技术难以管理的大量数据的集合,大数据带来的不仅是数量上的差异,更是一种思维方式的转变。我国法律大数据的研发和应用正处于尝试阶段,在数据分析阶段存在一定的局限性。传统的法律数据库公司,比如北大法宝,并未对数据进行二次开发和挖掘,也没有专门针对需求从事数据挖掘和分析的企业。目前已经开始有一些新兴的互联网公司开始对现有的法律方面的信息进行采集、挖掘、分析,针对用户需求提供解决方案。
大数据与企业家刑事风险防控
由于无法掌握相关的数据,使得很多研究无法实现。因为搜集实践中的法律相关信息存在一定困难,传统的企业家刑事风险预防研究主要以学理研究为主,实践研究为辅的方式。但是通过对法理的研究是无法掌握某一种刑事犯罪行为在实践中的法律实施情况的,这种差异往往会导致律师对案件的预判和结果产生比较大的误差,并且在辩护策略的制定上无法做出更有实务意义上的选择。
大数据对刑事法律研究的作用
一、大数据在企业家刑事风险预防研究中的作用
(一)大数据使研究结论更趋近于客观现实。依托于大数据的研究讲究通过全数据进行分析,当数据到达一定的量以后便会自动减少个别特殊样本对整体结果的影响程度。很多人担心一些刑事案件的判决结果存在一定的主观不确定因素,而用大数据的研究方法,因为数据样本的数量庞大,就可以减少这种不确定因素对研究结果的影响。
(二)大数据使很多研究内容成为可能。对于企业家刑事风险预防研究来说,北京师范大学中国企业家犯罪预防中心编制的《2014中国企业家犯罪报告》中就有包括犯罪企业家个人相关信息、所涉企业的情况等近四十项指标,这在过去缺乏数据的情况下是很难进行研究的。据笔者了解,现在已经有法律大数据公司自主研发相关系统,可以针对用户的研究需求,通过程序设定,运用机器对大数据进行处理,现代大数据处理技术的发展为未来相关研究提供了很大的便利。
(三)在数据中找到规律预防犯罪。通过对数据的研究分析,专业研究人员可以通过数据找到企业家刑事犯罪的特定规律及风险分布情况。通过对相关规律及风险点的分析,可以有针对性地提出预防的建议,为预防企业家刑事风险提供更可靠的依据和指引。
二、大数据在企业家刑事辩护中的作用
(一)对特定领域进行大数据研究和分析,掌握重要信息及知识。北京师范大学中国企业家刑事风险防控北京中心,在大数据的背景下,制定了关于企业家刑事辩护内部研究集。该研究集依托大数据的支撑,以罪名为划分标准,对罪名项下的一些重要内容进行了研究编写。通过对裁判文书数据的整理、分析而得出的各罪名项下的相关重要指标都是依托大数据的研究方法而制定的。内部研究集中关于辩护策略的内容也是中心成员通过对大量裁判文书进行分析后得出的。
(二)通过对特定类型案件的大数据分析,制定更有针对性的辩护策略。通过对大数据的宏观分析,可以了解某类案件的裁判规则;通过对大数据的微观分析可以预估特定地域,甚至特定法官对于某一类案件在实践中的隐形的裁判规则。不仅如此,通过对裁判文书中检方内容的深入研究分析,可以分析出某类案件检方一般采取的公诉方法和策略;通过对特定证据与裁判结果之间的关联分析,可以对某类证据与判决结果之间的关系进行预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14