京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈大数据为何解决不了道路交通拥堵
如今大数据被赋予了神一样的能量,好像只要是大数据当道就可以解决一切难题。这种想法显然不对,即便大数据可以帮助我们了解的更多,也不能预测到我们想象中的程度。

浅谈大数据为何解决不了道路交通拥堵
如今大数据被赋予了神一样的能量,好像只要是大数据当道就可以解决一切难题。这种想法显然不对,即便大数据可以帮助我们了解的更多,也不能预测到我们想象中的程度。
智能手机已经很普及,大多数的人们都拿着具有定位功能的手机,而4G网络又是这样的覆盖广泛,以至于我们每个人的行动时时刻刻都被运营商、互联网应用提供商所“监控”,这些数据被整合脱敏之后可以成为大数据分析的基本信息来源,从而为交通和出行提供管理上的帮助。
媒体报道,2006年,斯德哥尔摩与IBM合作,在通往市区的18个路段安装了传感器和照相机。搭载了感应装置的汽车在通过该路段时,系统会自动识别该车辆,并对其征收通行费。没有搭载感应装置的汽车通过该路段时,系统会自动识别照相机拍摄的车头照片上的车牌号码,确认汽车所有者,并对其征收通行费。该系统实施后,斯德哥尔摩市区交通量降低了25%,二氧化碳排放量减少了14%。
我们很多人都乐观的估计,主要信息足够,通过大数据分析来实现的智慧交通系统就会帮助我们做出理性的规划,从而,路路畅通。
理想很美好,可现实却很残酷。即便是各部门的大数据应用都起到了作用,国庆节出行的道路却依然拥堵,且没有任何改善的迹象。很多人都体会了去年10月1日各地道路上的堵车盛况,甚至有乘客下车在高速路上开始遛狗。在这一刻,大数据选择了失灵。
实际上,很多公司通过大数据已经对交通拥堵做出了预测。比如,去年全国最堵的京藏高速本来预计从30号到1号下午拥堵超过24小时,十一的返程高峰会出现在长假结束前一天下午3点到长假最后一天的23点。但这些数据都没有能够帮到很多人,大多数人还是会一如既往的走上拥堵的道路。
大数据肯定不是万能的,即便再强,也只是基于现实数据进行的一种分析,可以给我们提供参考,但这种参考的价值却不应该被无限制的放大。比如,我们可以提前通过大数据分析进行预警,那条道路会拥堵,会拥堵到什么程度,可如果条条大路都是超负荷的,大数据的提前预警作用也就失效了。
大数据可以帮助我们提前规划路线,避开拥堵的道路,但一旦道路全在拥堵,我们就失去了选择的机会。在这种情况下,“理性的人”应该选择呆在家里,这样就可以让自己不被堵在路上,也不会造成更大的拥堵,这样选择的人多了,道路可能就通畅了。问题是,很多人都这样想,大家都觉得别人会不出行,结果,群体性理性的选择带来了更大的拥堵。还有一种情况是,大家只有这个时候出行,再挤也要去,否则就没有别的机会可以选择。
因此,大数据的分析结果在群体性公共知识的面前,一定会变得毫无意义,甚至会起到负面作用。很多人认为,信息不对称的是导致交通拥堵的重要原因,而在实践中,信息太对称,也一样会导致拥堵。
我们获得的大数据也并非全面,还有很多人并不使用智能手机的定位功能,一些大数据分析公司无法获得数据。斯德哥尔摩是通过在公共交通工具上安装传感器,分析这些传感器数据,来掌握道路的拥挤情况,这种方式对城市道路很实用,而对于高速公路来说,目前大数据分析普遍采用的用户个人的智能手机定位数据并不可靠。
大数据分析也是十分复杂科学的工作,任何的理论或操作上的微小失误都可能造成分析结果的被错误使用。即便获得了用户数据,在分析的方法和使用的策略上也存在不足,难以充分发挥大数据的价值,这也造成了分析上的偏差,错误的引导会带来局部更为严重的拥堵。
与此同时,大数据在偶发事件面前也无能为力。在国庆节这样的大车流的情况下,一起偶然发生的交通事故就可以造成蝴蝶效应,由此带来一个路段的拥堵,然后是整个路段的拥堵,接着会造成更多辐射的路段上的连环拥堵的发生。这种事故是不可预测的,其后果也很难提前预知,而节日的道路变通的余地很小,一旦发生突发事件,交通拥堵的严重程度就会超出想象。
实事求是的说,大数据确实可以提升道路管理水平,但大数据却无法解决信息沟通中的群体错位决策,也无法解决超出符合的刚性需求到来的道路绝对拥堵,更没有办法应对随时可能出现的随机性的事故影响。大数据对于节假日期间的交通拥堵问题,绝对是有心无力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27