京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你真的会用大数据吗
近一两年来,大数据是一个被频繁提及的词汇。不管是近几天麻涌举行的五矿物流麻涌基地发布会上,还是在智博会配套活动中国(东莞)云计算高峰论坛上,越来越多的企业和研究者对大数据产生了非常浓厚的兴趣。越来越多的东莞企业表示想要做好大数据运营,但是,大数据要用好并不容易。
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。

大数据听起来似乎很高深,但其实已经渗透到人们生活的方方面面。例如一个消费者在淘宝上搜索了泳镜,接下来他在打开许多网站时都会看到游泳衣、游泳圈等相关产品的广告。这,就是当前大数据营销的一个典型应用场景。
前不久,陈国良和石钟慈两名专门研究云计算和大数据的工程院院士在东莞进行了一次大数据的知识普及讲座。
据陈国良院士介绍,2012年3月,美国总统奥巴马在一次研究计划上提出了大数据概念。“大数据”的说法由此被全球范围采用,而在此前,国内的研究者一般称其为天文数据、海量数据或者巨量数据。不管是物联网设备的传感器、科学研究还是人们的日常生活,都会产生大量的数据。而善于用好大数据技术,则可以从这些数据中挖到“黄金”。
不过,陈国良也表示,大数据的结果很有价值,但千万不能陷入大数据独裁主义,人,才是大数据的第一要素。当然,要求所有企业都具有大数据分析能力。
陈国良所说的大数据分析能力,便是大数据的组成部分。随着大数据的应用日渐广泛,影响日渐深远,大数据思维的重要性也日渐显著。
大数据思维,就是能够正确利用好大数据的思维方式。大数据并不是指任何决策都参考数据,也不是要求所有问题都足够精准,更不是花巨资打造大数据系统或平台,而是在应该让大数据出场的地方把大数据用好。
要用好大数据,首先应该采集大数据。与传统的调查问卷等搜集信息数据的方式不同,互联网时代的大数据采集是“无限的、无意识的、非结构化的”数据采集。各种纷繁复杂的行为数据以行为日志的形式上传到服务器中,随用随取。此外,分析数据使用了专门的数据模型。最值得一提的是,大数据可以根据营销、决策等特定问题,从数据库中调取海量数据进行挖掘以完成数据验证,甚至可以得出与常识或经验判断完全相异的结论出来。
不少业内人士表示,很多时候,大数据的价值正是体现在这样与直观判断大相径庭的地方。对此,陈国良也表示,“大数据分析结果有时候没有理论支撑甚至无法证明,不过分析仍然有效,技术仍然在发展!”陈国良还为东莞有意进行大数据挖掘的企业支招说,大数据的获取,不能依靠随机采样,也不能强求精确性,甚至分析结果也难以解释其所以然,不过能用就好,以后可以慢慢再弄清其中的科学原因。
业内人士分析说,大数据的应用领域正在逐步增加。一方面,东莞企业可以通过大数据对用户行为与特征作出分析。通过大量数据可以分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。此外,通过大数据可以支撑精准营销信息推送。让最精确的信息传递到正好匹配的客户手中。
另外,通过大数据可以让营销活动能够与用户能够产生“会心一击”的效果,这种基于海量数据的挖掘和匹配实现的精准信息,能够让企业有效地取得客户的欢心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05