
大数据助推健康险驶上快速路
随着我国经济发展进入新常态,天生逐利的资本都在积极探寻下一个“风口”。鉴于我国生活水平的不断提升,民众对健康险产品的需求将逐渐增大;而大数据技术运用的日益成熟,也将为社会方方面面带来或大或小的变化。于是各路资本闻风而来,希望占据健康险和大数据“风口”的一席之地。那么,当健康险遇到大数据,又会碰撞出什么火花?
健康险的发展之迅猛是业内外有目共睹的。保监会最新统计数据显示,今年前7个月,健康险业务原保险保费收入2743.89亿元,同比大幅增长94.05%,十分亮眼。同时,健康险原保费收入占整个保险业原保费收入的比例,也由去年底的9.93%升至今年前7个月的13.17%。
根据川财证券发布的研报,预计到2020年,我国大健康产业规模将达8万亿元。健康险市场将进入全面增长,基本医疗保险制度缺陷为商业健康险创造了巨大空间,预计到2020年,商业健康保险保费有望达到5000亿元至7000亿元,与财险、寿险成为并列的三大业务板块,年均复合增长率22%。而波士顿咨询集团和慕尼黑再保险公司则估计,按保费计算,到2020年,我国健康险市场规模将会达到1.1万亿元,较去年的2400亿元翻两番。
不过,要搭乘上商业健康险发展的快车,还面临一些实际阻碍。清华大学经济管理学院教授、中国保险与风险管理研究中心主任陈秉正表示,我国健康险业发展仅30余年,相对于人体健康变化的周期而言显得短暂,在疾病发生率、医疗费用支出率、平均余命等历史资料积累方面显得不足,数据基础薄弱。国家层面的人口健康数据应用平台处于论证阶段,省级层面的健康信息平台在陆续建设中,但仅限于卫生系统内部使用,保险业没有全行业共享的信息数据系统,与保单相关的大量医疗信息只记录在病历和赔付档案里,因此数据利用率低。
这一系列数据运用的问题导致健康险产品设计不够科学、定价不太精准、获客遇困难、医疗费用难管理、道德风险和骗保现象时有发生,直接影响了我国健康险的经营和发展。
“必须在合适的位置、在合适的时间、跟合适的人、推荐合适的健康险产品。”北京大数医达科技有限公司创始人邓侃指出,在不同时机,用户的诉求是不同的。
购买健康险的最佳时机是用户有征兆可能会患病的时候,而不是已经患病了以后。没有患病的恐惧,用户就不会有强大动机去买健康险。由于用户猜测可能会患病的时候,一般会进行医疗咨询,因此用户咨询的时候就是推荐保险的“合适的时间”。而医疗咨询最方便的方式就是在网上咨询,所以在移动互联网大流量的入口提供免费医疗咨询,顺势推荐健康险,就把握住了“合适的位置”。
邓侃直言,大数据能够提供医疗咨询,并借此收集用户的健康状况和病情,从而精准推荐健康险,向“合适的人”推荐“合适的健康险产品”。
医疗大数据最重要的数据来源是医院的病历。通过对病历做数据挖掘,可以整理出体征、症状、化验指标、影像检查标志物与疾病之间的关联关系,还有与药品和手术等治疗手段之间的关联关系,用于医疗咨询,并且能够基于患者的体征和症状,核对诊断过程中所做的化验和检查,实现诊断和治疗全过程的核保。
相关资料显示,国外在医疗大数据方面成就比较突出的三个企业,第一个是IBM Dr Watson,其计划在癌症领域针对某几个疾病,收集高质量的病历,并对它们进行数据挖掘,同时对相关论文做智能语义分析,双管齐下细分这几个疾病的病程,更精细地推荐各种治疗方案;第二个是Google旗下的DeepMind,该公司跟英国卫生部合作收集了全英国170万份病历,针对常见病,研发家庭医生电脑助手,实现常见病的标准化诊断和治疗;第三个是Flatiron Healthcare,它的主业是从全球各地收集病历,目前首要目标是收集癌症病历,由于各地医院的病历格式不统一、语义用词不规范,所以计划把全球的病历烫平整理,实现全球病历的互联互通。
我国的大数据应用领域也在逐渐发展,并且受到各路资本的追捧,金融大数据服务企业广东万丈金数日前宣布完成B轮融资,在短短一年内两次被资本市场所认可。在成立5年多的时间里,万丈金数已经打造出“数据+技术+服务”的大数据融合应用闭环。以企业级数据管理平台(E-DMP)为核心,打通企业内部和外部数据,线上和线下数据,PC端和移动端数据;通过万丈金数云平台及完善的用户行为采集分析体系,实现企业大数据循环动态增长。通过完整的大数据循环自生系统,帮助金融企业实现更精准的获客、更智慧的数据运营、更强大的数据管理。
截至目前,我国已经有不少初显成效的健康险大数据运用案例。太保安联健康通过与阿里健康合作,将后者的大数据、风控引擎和人脸识别防作弊等技术融入理赔环节,形成行业控费的双保险安全体系。众安保险在健康险产品上连接了相应的服务,与筛查检测机构合作,用来识别风险;与健康管理相关平台开展合作,开发“糖小贝”产品;与可穿戴式设备合作,推出“步步保”产品,鼓励用户用走路步数换取保费,帮助用户管理自己的健康;联合芝麻信用,提升医疗保险理赔响应速度等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25