
大数据助推健康险驶上快速路
随着我国经济发展进入新常态,天生逐利的资本都在积极探寻下一个“风口”。鉴于我国生活水平的不断提升,民众对健康险产品的需求将逐渐增大;而大数据技术运用的日益成熟,也将为社会方方面面带来或大或小的变化。于是各路资本闻风而来,希望占据健康险和大数据“风口”的一席之地。那么,当健康险遇到大数据,又会碰撞出什么火花?
健康险的发展之迅猛是业内外有目共睹的。保监会最新统计数据显示,今年前7个月,健康险业务原保险保费收入2743.89亿元,同比大幅增长94.05%,十分亮眼。同时,健康险原保费收入占整个保险业原保费收入的比例,也由去年底的9.93%升至今年前7个月的13.17%。
根据川财证券发布的研报,预计到2020年,我国大健康产业规模将达8万亿元。健康险市场将进入全面增长,基本医疗保险制度缺陷为商业健康险创造了巨大空间,预计到2020年,商业健康保险保费有望达到5000亿元至7000亿元,与财险、寿险成为并列的三大业务板块,年均复合增长率22%。而波士顿咨询集团和慕尼黑再保险公司则估计,按保费计算,到2020年,我国健康险市场规模将会达到1.1万亿元,较去年的2400亿元翻两番。
不过,要搭乘上商业健康险发展的快车,还面临一些实际阻碍。清华大学经济管理学院教授、中国保险与风险管理研究中心主任陈秉正表示,我国健康险业发展仅30余年,相对于人体健康变化的周期而言显得短暂,在疾病发生率、医疗费用支出率、平均余命等历史资料积累方面显得不足,数据基础薄弱。国家层面的人口健康数据应用平台处于论证阶段,省级层面的健康信息平台在陆续建设中,但仅限于卫生系统内部使用,保险业没有全行业共享的信息数据系统,与保单相关的大量医疗信息只记录在病历和赔付档案里,因此数据利用率低。
这一系列数据运用的问题导致健康险产品设计不够科学、定价不太精准、获客遇困难、医疗费用难管理、道德风险和骗保现象时有发生,直接影响了我国健康险的经营和发展。
“必须在合适的位置、在合适的时间、跟合适的人、推荐合适的健康险产品。”北京大数医达科技有限公司创始人邓侃指出,在不同时机,用户的诉求是不同的。
购买健康险的最佳时机是用户有征兆可能会患病的时候,而不是已经患病了以后。没有患病的恐惧,用户就不会有强大动机去买健康险。由于用户猜测可能会患病的时候,一般会进行医疗咨询,因此用户咨询的时候就是推荐保险的“合适的时间”。而医疗咨询最方便的方式就是在网上咨询,所以在移动互联网大流量的入口提供免费医疗咨询,顺势推荐健康险,就把握住了“合适的位置”。
邓侃直言,大数据能够提供医疗咨询,并借此收集用户的健康状况和病情,从而精准推荐健康险,向“合适的人”推荐“合适的健康险产品”。
医疗大数据最重要的数据来源是医院的病历。通过对病历做数据挖掘,可以整理出体征、症状、化验指标、影像检查标志物与疾病之间的关联关系,还有与药品和手术等治疗手段之间的关联关系,用于医疗咨询,并且能够基于患者的体征和症状,核对诊断过程中所做的化验和检查,实现诊断和治疗全过程的核保。
相关资料显示,国外在医疗大数据方面成就比较突出的三个企业,第一个是IBM Dr Watson,其计划在癌症领域针对某几个疾病,收集高质量的病历,并对它们进行数据挖掘,同时对相关论文做智能语义分析,双管齐下细分这几个疾病的病程,更精细地推荐各种治疗方案;第二个是Google旗下的DeepMind,该公司跟英国卫生部合作收集了全英国170万份病历,针对常见病,研发家庭医生电脑助手,实现常见病的标准化诊断和治疗;第三个是Flatiron Healthcare,它的主业是从全球各地收集病历,目前首要目标是收集癌症病历,由于各地医院的病历格式不统一、语义用词不规范,所以计划把全球的病历烫平整理,实现全球病历的互联互通。
我国的大数据应用领域也在逐渐发展,并且受到各路资本的追捧,金融大数据服务企业广东万丈金数日前宣布完成B轮融资,在短短一年内两次被资本市场所认可。在成立5年多的时间里,万丈金数已经打造出“数据+技术+服务”的大数据融合应用闭环。以企业级数据管理平台(E-DMP)为核心,打通企业内部和外部数据,线上和线下数据,PC端和移动端数据;通过万丈金数云平台及完善的用户行为采集分析体系,实现企业大数据循环动态增长。通过完整的大数据循环自生系统,帮助金融企业实现更精准的获客、更智慧的数据运营、更强大的数据管理。
截至目前,我国已经有不少初显成效的健康险大数据运用案例。太保安联健康通过与阿里健康合作,将后者的大数据、风控引擎和人脸识别防作弊等技术融入理赔环节,形成行业控费的双保险安全体系。众安保险在健康险产品上连接了相应的服务,与筛查检测机构合作,用来识别风险;与健康管理相关平台开展合作,开发“糖小贝”产品;与可穿戴式设备合作,推出“步步保”产品,鼓励用户用走路步数换取保费,帮助用户管理自己的健康;联合芝麻信用,提升医疗保险理赔响应速度等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02