
数据可视化”可以帮助用户理解数据,一直是热门方向。
图表是”数据可视化”的常用手段,其中又以基本图表—-柱状图、折线图、饼图等等—-最为常用。
用户非常熟悉这些图表,但如果被问道,它们的特点是什么,最适用怎样的场合(数据集)?恐怕答得上来的人就不多了。
本文是电子书《Data Visualization with JavaScript》第一章的笔记,总结了六种基本图表的特点和适用场合,非常好地回答了上面的问题。
序言
进入正题之前,先纠正一种误解。
有人觉得,基本图表太简单、太原始,不高端,不大气,因此追求更复杂的图表。但是,越简单的图表,越容易理解,而快速易懂地理解数据,不正是”数据可视化”的最重要目的和最高追求吗?
所以,请不要小看这些基本图表。因为用户最熟悉它们,所以只要是适用的场合,就应该考虑优先使用。
一、柱状图(Bar Chart)
柱状图是最常见的图表,也最容易解读。
它的适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较。年销售额就是二维数据,”年份”和”销售额”就是它的两个维度,但只需要比较”销售额”这一个维度。
柱状图利用柱子的高度,反映数据的差异。肉眼对高度差异很敏感,辨识效果非常好。柱状图的局限在于只适用中小规模的数据集。
通常来说,柱状图的X轴是时间维,用户习惯性认为存在时间趋势。如果遇到X轴不是时间维的情况,建议用颜色区分每根柱子,改变用户对时间趋势的关注。
上图是英国足球联赛某个年度各队的赢球场数,X轴代表不同球队,Y轴代表赢球数。
二、折线图(Line Chart)数据
折线图适合二维的大数据集,尤其是那些趋势比单个数据点更重要的场合。
它还适合多个二维数据集的比较。
上图是两个二维数据集(大气中二氧化碳浓度,地表平均气温)的折线图。
三、饼图(Pie Chart)
饼图是一种应该避免使用的图表,因为肉眼对面积大小不敏感。
上图中,左侧饼图的五个色块的面积排序,不容易看出来。换成柱状图,就容易多了。
一般情况下,总是应该用柱状图替代饼图。但是有一个例外,就是反映某个部分占整体的比重,比如贫穷人口占总人口的百分比。
四、散点图(Scatter Chart)
散点图适用于三维数据集,但其中只有两维需要比较。
上图是各国的医疗支出与预期寿命,三个维度分别为国家、医疗支出、预期寿命,只有后两个维度需要比较。
为了识别第三维,可以为每个点加上文字标示,或者不同颜色。
五、气泡图(Bubble Chart)
气泡图是散点图的一种变体,通过每个点的面积大小,反映第三维。
上图是卡特里娜飓风的路径,三个维度分别为经度、纬度、强度。点的面积越大,就代表强度越大。因为用户不善于判断面积大小,所以气泡图只适用不要求精确辨识第三维的场合。
如果为气泡加上不同颜色(或文字标签),气泡图就可用来表达四维数据。比如下图就是通过颜色,表示每个点的风力等级。
六、雷达图(Radar Chart)
雷达图适用于多维数据(四维以上),且每个维度必须可以排序(国籍就不可以排序)。但是,它有一个局限,就是数据点最多6个,否则无法辨别,因此适用场合有限。
下面是迈阿密热火队首发的五名篮球选手的数据。除了姓名,每个数据点有五个维度,分别是得分、篮板、助攻、抢断、封盖。
画成雷达图,就是下面这样。
面积越大的数据点,就表示越重要。很显然,勒布朗·詹姆斯(红色区域)是热火队最重要的选手。
需要注意的时候,用户不熟悉雷达图,解读有困难。使用时尽量加上说明,减轻解读负担。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29