
大数据是一种技术性战略资源 可开启创业时代
创新驱动发展战略是广东经济发展的“核心战略”和“总抓手”,科技创新是创新驱动的核心。大数据技术正在带来一次革命,大数据不仅意味着海量、多样、迅捷的数据处理,更是一种新的生产要素、一种创新资源和一种新的思维方式。大数据可以从产业结构、传统制造业升级、商业组织、“互联网+”和“大众创业,万众创新”等方面影响经济增长方式,助推创新驱动发展。
大数据技术,绝不仅仅是信息技术领域的变革,更是一种技术性战略资源,它使各种物质生产要素因新技术的介入而提高创新能力,形成内生性增长。
一、作为一种新的生产要素,大数据技术促进经济结构转型
大数据推动经济增长的积极作用,不仅意味着更高水平的生产力,还意味着经济结构的转型。
其一,与大数据时代对应的经济结构是智能经济。智能经济是以人脑智慧、电脑网络和物理设备为基本要素构成的经济结构和增长方式。大数据时代必将催生很多创新产业,重构甚至颠覆某些行业传统的产业链。
其二,大数据可推动突破性技术的研发,促进企业创新,改变产业格局。大数据的核心是预测,精准预测建立在对大量结构性和非结构性数据进行相关性分析的基础上。企业可以利用大数据研发其他领域的专业技术,为企业技术创新提供广阔空间,而这些新技术具有突破性,拥有改变整个产业格局的潜力。
其三,大数据服务渗透到传统行业,推动传统产业升级
大数据的应用对产业结构优化具有积极影响。目前大数据最大的应用前景是在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍占据了GDP的大部分份额。大数据已经与社交媒体、电子商务、广告营销、金融等行业发生紧密的融合,专业化的大数据服务已开始渗透到农业、建筑、能源、体育、餐饮、音乐等传统行业,挖掘数据价值,改造和优化传统行业的企业管理、产品服务设计、商业模式等环节。这一趋势在未来将会得到进一步强化,并将极大推动传统产业的升级。
二、用大数据开启创业时代
大数据分析的好处是在海量样本的基础上使分析大数据的技术门槛降低。此外,大数据技术在萌芽阶段就是开源技术,无偿供给全世界的开发者使用,后续包括Hadoop等底层技术均为开源性质,也没有任何专利门槛。在舍恩伯格看来,“算法”可撬动大数据的创业时代。也就是说,只需要拥有对于数据分析的思路也即一套“算法”,创业可以有很多新的可能。首先,你不需要是统计学家、工程师或者数据分析师,就可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。其次,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。第三,大数据服务有利于创业公司的涌现。订阅式定价模式是未来大数据服务的方向,即顾客无需维护硬件、电源和工程维修资源,服务完全根据顾客的需要而定:顾客有需要时,就可以使用更多功能;不需要时,功能就会减少。大数据服务的优势在于,顾客只为使用的东西消费。这尤其对创业公司有利,它们可以避免高昂的先期管理服务器和存储基础设施的投入。
三、作为一种新的思维方式,大数据思维引发科研方式的变革,促进科技创新能力的提高
过去我们认识世界的方式主要是通过“因果关系”,现在又多了一个方法—“相关关系”。大数据分析形成的“相关关系”为我们认识世界提供了一种新方法,引起科研方式的深刻变革,形成创新的新动力。
大数据技术的一个重大意义在于其能够影响科学研究本身的发展,使科学从过去的假设驱动型转化为数据驱动型。传统科研方法大都采用假设和验证的方法来分析问题产生的原因,进而寻求解决途径。应用大数据技术,人们开展科学研究不再是从提出自己的假设出发,而是先进行数据分析,然后再提出科学假设。大数据时代,知识技术创新模式正在从这种求因果向重相关发生转变,各领域的科研人员可以充分利用大数据快速挖掘事物间的相关性,预测事物发展的方向和趋势,从而实现知识技术创新。
对许多科学与工程学科领域而言,大数据技术能推动大学和工业实验室的基础研究,能加快取得新发现的速度。在推动信息技术的进步上,大数据技术更是起到重要的直接作用。为了应对大数据技术提出的挑战,科学家和工程师们必须要在信息技术领域作出重大创新:需要开发能以更高的速度处理如此复杂的海量数据的高性能计算技术;要求数学家和统计学家开发能够分析这些数据的新算法;要求数据分析专家运用新的技术从数据中“萃取”更大的、甚至意想不到的价值。
四、数据开放激发社会的创新活力
数据开放,可充分利用蕴藏着的社会能量,调动大众的智慧。数据是知识生产和创新的资源,通过互联网开放数据,就是将原来由部分社会精英垄断的知识和创新资源,开放给大众,进一步调动大众智慧,推动大众创新。每个人贡献一点点,大数据就可能还原事件的真相,或者推动某种创新。例如,开源项目、开源社区、开放性创新联盟组织的兴起,有效降低了产业技术的壁垒,推动更多的创业者介入。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10