
大数据分析智能制造业
今年五月国务院正式印发了《中国制造2025》,部署全面推进实施制造强国战略,旨在通过重点推进创新驱动、智能转型、强化基础、绿色发展,推动中国从制造业大国跻身世界制造强国之列。
然而,不论是中国制造2025,还是所谓的工业4.0,概念阐述虽有所不同,但其本质趋于同归,制造业是中国经济不断增长的强心剂,“互联网+”的深入推进,同时与制造业深入融合,早就更加智能的制造,势必会引发一场全新的工业革命。
制造业大数据浪潮
正如麦肯锡所述“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”对于制造业而言,数据一直被奉为生命之血。如果说制造业信息化的最初阶段是企业资源计划(ERP)、产品生命周期管理(PLM)等应用系统实施的话,那么接下来对数据的掌控将成为未来发展的重点。
对于中国的制造型企业来说,最初是从粗放式的管理向精细化转型;然而市场竞争非常严苛,制造业需要在这样的环境下不断优化生产工艺、加速业务流程,实现更加科学的决策分析。通过驾驭大数据无疑会让制造企业变得更智慧,在竞争日益激烈的市场中就会获得更高的竞争力。
新层次的大数据分析为制造业研究市场和趋势分析带来新的维度。这些数据被用于预测未来、规避风险、理解价值链并优化客户体验的重要工具,为制造业未来业务的增长指明方向。
此外,越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)系统交易数据、社交媒介和地理空间数据,还有内部文档和其它格式信息等等。
现在企业存储的信息量即便不是PB级,起码也有TB量级。这些企业可能希望每天能分析几次关键数据,甚至是实现实时分析;而传统BI流程对历史数据进行分析的频率是以周或月为单位的。
摆脱制造业困境
实际上,企业如果要进行大数据分析实践,选择合适的技术是规划的第一部分,企业选择了数据库软件、分析工具以及相关的技术架构后,才可以进行下一步并开发一个真正成功的大数据平台。
数据收集仅仅是个开始,这些数据必须能够转化为实际的行动,从而指导企业运营。要实现这一点就必须注意数据的细节,正确理解数据的相关性。比如,企业所拥有的各种数据源需要与数据关联性和业务规则复杂度进行链接,以获得一个包含企业绩效、销售机会、客户行为、风险因素和其它业务指标的全面视图。由于对于数据分析的需要,历史数据的数量也需考虑在内。
如果企业需要五年的数据,而一个数据源只包含两年的信息,那么该怎么办呢?这些因素并不能从根本上影响需求的规划,但是它们可以帮助企业部署大数据分析系统、选择最为合适的技术。
对于垂直市场而言,现成的分析应用程序都是专门为其定制的,当公司管理人员和业务经理需要查看大数据分析查询结果时,数据可视化工具可以简化其流程。
企业在在制定实施方案、对大数据分析解决方案进行选型之前,还需要考虑一些问题。智能化的大数据分析解决方案可为企业提供精准的趋势预测。一方面可以深刻理解市场需求和用户的痛点,从而做到真正的产品创新;另一方面对库存、物料、人员等资源进行更优化的计划和协调。
大数据正在以稳定的步伐渗透到各行各业,未来我们的生活中大数据的应用会越来越多,而对于制造业而言,需要化被动为主动,因为信息质量会变得更好,而且信息能够更高效的得到利用,从而充分享受到大数据分析所带来的红利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29