京公网安备 11010802034615号
经营许可证编号:京B2-20210330
盘点大数据带给中国的十商业应用场景
大数据冲击着许多主要行业,包括零售业、金融行业、医疗行业等,大数据也在彻底地改变着我们的生活。现在我们就来看看大数据给中国带来的十商业应用场景,未来大数据产业将会是一个万亿市场。

1、智慧城市
如今,世界超过一半的人口生活在城市里,到2050年这一数字会增长到75%。政府需要利用一些技术手段来管理好城市,使城市里的资源得到良好配置。既不出现由于资源配置不平衡而导致的效率低下以及骚乱,又要避免不必要的资源浪费而导致的财政支出过大。大数据作为其中的一项技术可以有效帮助政府实现资源科学配置,精细化运营城市,打造智慧城市。
城市的道路交通,完全可以利用GPS数据和摄像头数据来进行规划,包括道路红绿灯时间间隔和关联控制,包括直行和左右转弯车道的规划、单行道的设置。利用大数据技术实施的城市交通智能规划,至少能够提高30%左右的道路运输能力,并能够降低交通事故率。在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。机场的航班起降依靠大数据将会提高航班管理的效率,航空公司利用大数据可以提高上座率,降低运行成本。铁路利用大数据可以有效安排客运和货运列车,提高效率、降低成本。
城市公共交通规划、教育资源配置、医疗资源配置、商业中心建设、房地产规划、产业规划、城市建设等都可以借助于大数据技术进行良好规划和动态调整。
大数据技术可以了解经济发展情况,各产业发展情况,消费支出和产品销售情况,依据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。大数据及大数据技术带给政府的不仅仅是效率提升、科学决策、精细管理,更重要的是数据治国、科学管理的意识改变,未来大数据将会从各个方面来帮助政府实施高效和精细化管理,具有极大的想象空间。
2、金融行业
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。中国金融行业大数据应用开展的较早,但都是以解决大数据效率问题为主,很多金融行业建立了大数据平台,对金融行业的交易数据进行采集和处理。
金融行业过去的大数据应用以分析自身财务数据为主,以提供动态财务报表为主,以风险管理为主。在大数据价值变现方面,开展的不够深入,这同金融行业每年上万亿的净利润相比是不匹配的。现在已经有一些银行和证券开始和移动互联网公司合作,一起进行大数据价值变现,其中招商银行、平安集团、兴业银行、国信证券、海通证券和TalkingData在移动大数据精准营销、获客、用户体验等方面进行了不少的尝试,大数据价值变现效果还不错,大数据正在帮助金融行业进行价值变现。大数据在金融行业的应用可以总结为以下五个方面:
(1)精准营销:依据客户消费习惯、地理位置、消费时间进行推荐;(2)风险管控:依据客户消费和现金流提供信用评级或融资支持,利用客户社交行为记录实施信用卡反欺诈;(3)决策支持:利用抉策树技术进抵押贷款管理,利用数据分析报告实施产业信贷风险控制;(4)效率提升:利用金融行业全局数据了解业务运营薄弱点,利用大数据技术加快内部数据处理速度;(5)产品设计:利用大数据计算技术为财富客户推荐产品,利用客户行为数据设计满足客户需求的金融产品。
3、医疗行业
医疗行业拥有大量病例、病理报告、医疗方案、药物报告等。如果这些数据进行整理和分析,将会极大地帮助医生和病人。在未来,借助于大数据平台我们可以收集疾病的基本特征、病例和治疗方案,建立针对疾病的数据库,帮助医生进行疾病诊断。
如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊。在制定治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制定出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。
医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法起大规模应用。未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。政府是推动这一趋势的重要动力,未来市场将会超过几千亿元。
4、农牧业
农产品不容易保存,合理种植和养殖农产品对农民非常重要。借助于大数据提供的消费能力和趋势报告,政府将为农牧业生产进行合理引导,依据需求进行生产,避免产能过剩,造成不必要的资源和社会财富浪费。大数据技术可以帮助政府实现农业的精细化管理,实现科学决策。在数据驱动下,结合无人机技术,农民可以采集农产品生长信息,病虫害信息。
农业生产面临的危险因素很多,但这些危险因素很大程度上可以通过除草剂、杀菌剂、杀虫剂等技术产品进行消除。天气成了影响农业非常大的决定因素。过去的天气预报仅仅能提供当地的降雨量,但农民更关心有多少水分可以留在他们的土地上,这些是受降雨量和土质来决定的。Climate公司利用政府开放的气象站的数据和土地数据建立了模型,他们可以告诉农民可以在哪些土地上耕种,哪些土地今天需要喷雾并完成耕种,哪些正处于生长期的土地需要施肥,哪些土地需要5天后才可以耕种,大数据技术可以帮助农业创造巨大的商业价值。
5、零售行业
零售行业比较有名气的大数据案例就是沃尔玛的啤酒和尿布的故事,以及Target通过向年轻女孩寄送尿布广告而告知其父亲,女孩怀孕的故事。
零售行业可以通过客户购买记录,了解客户关联产品购买喜好,将相关的产品放到一起增加来增加产品销售额,例如将洗衣服相关的化工产品例如洗衣粉、消毒液、衣领净等放到一起进行销售。根据客户相关产品购买记录而重新摆放的货物将会给零售企业增加30%以上的产品销售额。
零售行业还可以记录客户购买习惯,将一些日常需要的必备生活用品,在客户即将用完之前,通过精准广告的方式提醒客户进行购买。或者定期通过网上商城进行送货,既帮助客户解决了问题,又提高了客户体验。
电商行业的巨头天猫和京东,已经通过客户的购买习惯,将客户日常需要的商品例如尿不湿,卫生纸,衣服等商品依据客户购买习惯事先进行准备。当客户刚刚下单,商品就会在24小时内或者30分钟内送到客户门口,提高了客户体验,让客户连后悔等时间都没有。
利用大数据的技术,零售行业将至少会提高30%左右的销售额,并提高客户购买体验。
6、大数据技术产业
进入移动互联网之后,非结构化数据和结构化数据呈指数方式增长。现在人类社会每两年产生的数据将超过人类历史过去所有数据之和。进入到2015年,人类社会所有的数据之和有望突破5ZB,这些数据如何存储和处理将会成为很大的问题。
这些大数据为大数据技术产业提供了巨大的商业机会。据估计全世界在大数据采集、存储、处理、清晰、分析所产生的商业机会将会超过2000亿美金,包括政府和企业在大数据计算和存储,数据挖掘和处理等方面等投资。中国2014年大数据产业产值已经超过了千亿人民币,本届贵阳大数据博览会就吸引了400多家厂商来参展,充分说明大数据产业的未来的商业价值巨大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17