京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,你的数据中心如何迎战
信息时代,数据已经融入到了每一个行业,每一个业务领域。继“物联网”、云计算”之后,“大数据”一词被越来越多地提及。“大数据”在政府,金融,公安,通讯,交通,医疗,媒资等行业已存在多时,却因为近年来信息行业的发展而再度引起人们的关注。
你的云数据中心,拿什么来迎战“大数据时代”?
“大数据”作为云计算,物联网之后IT行业又一大颠覆性的技术革命,将对企业的数据中心带来颠覆性的影响。传统数据中心已无法满足海量复杂数据的处理和分析要求,企业内部的经营交易信息,互联网世界中的产品信息,物流信息等等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何能满足企业业务快速发展的需要,为业务部门提供最佳的IT服务和体验,是企业信息化建设中目前面临的难题,企业需要积极思考传统数据中心如何应对大数据的挑战。
你的云数据中心,可以正面迎接“大数据时代”的冲击吗?
现阶段,大部分企业已有独立的数据中心,能够满足日常业务的需求。但是大数据时代对于数据中心的信息处理能力,数据融合分析能力,存储,计算能力以及数据挖掘都提出了更高的要求。
我们理解,一般数据中心的数据都来源于电脑,移动终端等等,而大数据时代的数据类型更加多样化,数据来源包括视频、音频、检测仪传感器等不同的渠道,各个行业的业务部门开始使用这些数据提高生产效率,分析热点事件,改进生产质量,寻找新型商业模式。因此,不同于传统应用环境对数据简单的进行存储和归档,在新的应用环境下更加强调数据的实时可用性。另一方面,大数据时代,对于数据的实时处理和高效运维也有较高的要求,企业都希望自己的数据中心有能力通过实时分析报表和数据来随时掌握企业运营状况,需要快速做出决策判断。如果相关数据获取不及时有可能会很大程度影响部门对于业务的分析和决策。所以企业需要思考应该如何提升数据中心的基础架构可以更高效的支撑数据的处理能力,分析能力,提高整体运营运维效率。
未来的云数据中心,发展方向在哪里?
如何让数据驱动业务发展,这是大数据时代下数据中心必须面对的问题。传统数据中心集中应对业务部门的需求,基础能力已经入不敷出;大数据时代下,数据的复杂性决定了数据中心需要更快速滴应对业务需求的变化和不确定性。如何保证数据中心可以为业务部门提供敏捷高效,安全可靠的服务?华为认为,未来的数据中心应该是以业务驱动为导向,提出了数据融合的云数据中心的理念。
数据融合的云数据中心不再限于单个物理数据中心的能力和用户体验,而是将所有数据中心物理资源(不论是多个还是单个物理数据中心)看成一个资源整体,围绕跨数据中心管理,资源调度和灾备设计,实现多个物理数据中心的逻辑统一,其关键技术包括实现统一资源池系统的云操作系统FusionSphere, 全数据中心统一资源管理与调度的运营运维管理系统ManageOne,基于大二层SDN超宽带网络和软件定义数据中心VDC(虚拟数据中心)。
1、业务敏捷:统一的数据融合资源池,统一建设,不同的业务系统按需申请数据资源,数据平台基于不同的业务诉求, 自动部署数据的节点、实现业务快速发放。
2、数据全生命周期处理能力:统一的数据融合平台提供数据采集、存储、计算、应用全生命周期的能力, 不同的业务系统可以基于对数据的需求,可以自定义所需的hadoop大数据组件,关系型数据库Oracle/SQL Server/MySQL,数据采集ETL等能力。
3、数据融合与智能分析:多系统、多格式、多地域、多类型的数据源,通过数据融合将会被统一存储、统一计算、统一分析,数据之间也因业务需求自由流动;数据大规模融合,进一步提升业务上线率,提升人员办公效能,并从海量的数据中,及时找到企业所需的热点信息流,通过智能分析,挖掘数据更多的价值。
4、现网应用:新的数据平台适应原有系统对数据库的需求,统一的SQL 、统一的搜索,分布式大数据网关,将会保证原有系统少改动,数据处理分析能力大规模提升、业务系统将可以处理更多的数据。
未来,数据的核心应用将是帮助企业如何发现更大的商业价值。如何使用大数据,如何在海量数据中挖掘有价值的信息是重中之重,因此企业更应专注于数据中心隐藏的价值,通过融合的数据平台,充分挖掘数据的核心价值,不断优化数据中心业务流程,降低管理成本,协助企业做出数据支撑的准确的科学决策,为企业的持续创新与发展贡献力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01