京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,你的数据中心如何迎战
信息时代,数据已经融入到了每一个行业,每一个业务领域。继“物联网”、云计算”之后,“大数据”一词被越来越多地提及。“大数据”在政府,金融,公安,通讯,交通,医疗,媒资等行业已存在多时,却因为近年来信息行业的发展而再度引起人们的关注。
你的云数据中心,拿什么来迎战“大数据时代”?
“大数据”作为云计算,物联网之后IT行业又一大颠覆性的技术革命,将对企业的数据中心带来颠覆性的影响。传统数据中心已无法满足海量复杂数据的处理和分析要求,企业内部的经营交易信息,互联网世界中的产品信息,物流信息等等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何能满足企业业务快速发展的需要,为业务部门提供最佳的IT服务和体验,是企业信息化建设中目前面临的难题,企业需要积极思考传统数据中心如何应对大数据的挑战。
你的云数据中心,可以正面迎接“大数据时代”的冲击吗?
现阶段,大部分企业已有独立的数据中心,能够满足日常业务的需求。但是大数据时代对于数据中心的信息处理能力,数据融合分析能力,存储,计算能力以及数据挖掘都提出了更高的要求。
我们理解,一般数据中心的数据都来源于电脑,移动终端等等,而大数据时代的数据类型更加多样化,数据来源包括视频、音频、检测仪传感器等不同的渠道,各个行业的业务部门开始使用这些数据提高生产效率,分析热点事件,改进生产质量,寻找新型商业模式。因此,不同于传统应用环境对数据简单的进行存储和归档,在新的应用环境下更加强调数据的实时可用性。另一方面,大数据时代,对于数据的实时处理和高效运维也有较高的要求,企业都希望自己的数据中心有能力通过实时分析报表和数据来随时掌握企业运营状况,需要快速做出决策判断。如果相关数据获取不及时有可能会很大程度影响部门对于业务的分析和决策。所以企业需要思考应该如何提升数据中心的基础架构可以更高效的支撑数据的处理能力,分析能力,提高整体运营运维效率。
未来的云数据中心,发展方向在哪里?
如何让数据驱动业务发展,这是大数据时代下数据中心必须面对的问题。传统数据中心集中应对业务部门的需求,基础能力已经入不敷出;大数据时代下,数据的复杂性决定了数据中心需要更快速滴应对业务需求的变化和不确定性。如何保证数据中心可以为业务部门提供敏捷高效,安全可靠的服务?华为认为,未来的数据中心应该是以业务驱动为导向,提出了数据融合的云数据中心的理念。
数据融合的云数据中心不再限于单个物理数据中心的能力和用户体验,而是将所有数据中心物理资源(不论是多个还是单个物理数据中心)看成一个资源整体,围绕跨数据中心管理,资源调度和灾备设计,实现多个物理数据中心的逻辑统一,其关键技术包括实现统一资源池系统的云操作系统FusionSphere, 全数据中心统一资源管理与调度的运营运维管理系统ManageOne,基于大二层SDN超宽带网络和软件定义数据中心VDC(虚拟数据中心)。
1、业务敏捷:统一的数据融合资源池,统一建设,不同的业务系统按需申请数据资源,数据平台基于不同的业务诉求, 自动部署数据的节点、实现业务快速发放。
2、数据全生命周期处理能力:统一的数据融合平台提供数据采集、存储、计算、应用全生命周期的能力, 不同的业务系统可以基于对数据的需求,可以自定义所需的hadoop大数据组件,关系型数据库Oracle/SQL Server/MySQL,数据采集ETL等能力。
3、数据融合与智能分析:多系统、多格式、多地域、多类型的数据源,通过数据融合将会被统一存储、统一计算、统一分析,数据之间也因业务需求自由流动;数据大规模融合,进一步提升业务上线率,提升人员办公效能,并从海量的数据中,及时找到企业所需的热点信息流,通过智能分析,挖掘数据更多的价值。
4、现网应用:新的数据平台适应原有系统对数据库的需求,统一的SQL 、统一的搜索,分布式大数据网关,将会保证原有系统少改动,数据处理分析能力大规模提升、业务系统将可以处理更多的数据。
未来,数据的核心应用将是帮助企业如何发现更大的商业价值。如何使用大数据,如何在海量数据中挖掘有价值的信息是重中之重,因此企业更应专注于数据中心隐藏的价值,通过融合的数据平台,充分挖掘数据的核心价值,不断优化数据中心业务流程,降低管理成本,协助企业做出数据支撑的准确的科学决策,为企业的持续创新与发展贡献力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20