
你不需要大数据,你需要的是正确的数据
你需要的并不是大数据,而是正确的数据。以Uber为例,Uber每天都能收集到海量数据,但Uber会分析全部数据吗?不会,它只用那些能让产品更快连接乘客和司机的关键数据。
问三个问题去挖掘你做决策所需要的正确数据:
哪些地方在浪费资源(时间、金钱、人力、原料等)?
如何自动化地减少浪费?
针对1与2,需要哪些数据?
以下是全文:
大数据这个词已经无处不在。无论是大企业、小企业、传统行业、新兴行业,每一家公司都加入了大数据的浪潮,好像有了大数据就能解决所有问题。
企业通过社会、天气、政府数据来预测供应链中断。大量的用户数据被各个网站收集利用,一些公司甚至开始利用大量的文本交流数据建立算法,从而与客户进行对话。
但现实的情况是,我们对大数据重要性的痴迷,往往会产生误导。是的,在一些情况下,从数据中能获取有价值的东西,但对于创新者来说,数据量和规模不是关键的因素,找到正确的数据才是关键。
关键不在于数据的大小
在谈到大数据作用的时候,我们总是拿Uber来举例,他们好像是用大数据获得成功的最典型的例子。毫无疑问,Uber从数据中获得了财富。依靠他们的应用,Uber从司机和乘客那里获得了实时的数据,让他们能够知道何时、何处人们对车辆有着较高的需求。
但Uber的成果并不是依靠他们所采集的大量数据,这些大数据使公司能够进入新的市场,但Uber的成功来自非常不同的东西,小的、但是正确的数据:车辆调度数据。
在Uber诞生之前,我们打的是传统的出租车。虽然传统出租车看上去与互联网没有什么关系,但是其实它们才是一种依靠大数据的东西。原因是,传统出租车依赖的是“人眼网络”:无数人站在城市中的某一个点,在看到出租车后马上招手。虽然貌似与信息科技无关,但是实际上人们在打车的过程中,同样使用了计算,人脑的计算:我们在大脑中收集并且分析数据。
Uber提出了一个更优雅的解决方案,人们不再需要自己跑到街上去用眼睛收集数据,不用再用大脑去处理数据,而是让Uber为我们提供正确的数据来完成打车任务。城市中谁需要打车?他在哪里?离他最近的车在哪里?需要多长时间能接到乘客?正是凭借这些正确的数据,Uber和滴滴才得以成功的在出租车行业内掀起了革命。
Uber的优雅解决方案是停止运行可视化数据-生物的异常检测算法,只需要正确的数据来完成工作。城市里的人需要搭车,他们在哪里?这些关键信息让Uber、Lyft、滴滴出行彻底改变了一个行业。
用正确的数据完成工作
有时候正确的数据规模也很大,也有的时候正确的数据规模很小。对于创新者,关键在于哪些关键的数据对企业最有帮助,要找到正确的数据,我建议你思考下面三个问题。
问题1:是什么在浪费公司的资源?
大部分汽油都在日常运营中浪费大量的资源。拿鲜花零售业来举个例子,大多数花店中50%的库存最终都会被浪费掉。正因如此,才产生了UrbanStems和Bouqs这样的鲜花配送服务,它们通过正确的数据帮助花店减少浪费。
“哪里有浪费,哪里就有机会”。无论你是工业生产、零售还是法务调查公司,搞清楚哪些因素会浪费你的资源,都能够帮你找到正确的数据。
问题2:如何通过自动化来减少浪费?
在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。人类擅长于做某些类型的决定,比如在品牌营销方面,这部分应该交给人类解决。
但是当涉及到做简单的重复性经营决定的时候(比如把出租车派到每个地方,如何给产品定价,向花店订多少鲜花),机器比人更擅长。虽然有许多传统的人类做决定的商业模式是可预测的,现在我们能分辨更多的数据,来进行自动化。
例如,有传言称亚马逊正打算取消所有的人工定价团队,让算法来给大部分商品进行定价。在零售商眼里,这是完全不可思议的行为。但是如果亚马逊的算法能够胜任定价工作,它将为亚马逊减少成本、库存,以及推出更好的可预测的新产品介绍,这一切将会产生巨大的竞争优势。
问题3:你需要哪些数据来完成这一切?
只要你理解了传统系统当中的浪费,并且知道了浪费造成的后果,最后一步是去问一个简单的问题。如果你可以有任何数据来帮助你做出完美的决定,它会是什么?
在Uber这个例子里,为了完成自动化指派司机工作,从而减少资源的闲置,他们需要知道潜在的乘客可能在城市的哪些位置。另一个例子是通用电气旗下的产业互联网软件Predix,公司在机器发生故障前提前知道,以减少维护工作的成本,以及减少停机时间的浪费。对于寻求降低成本的保险公司,他们想知道一个糖尿病患者血糖下降的时候,以帮助自动化进行围绕病人的干预措施,减少不善疾病的影响。
这就是你所需要的数据,通过处理大量的信息找到他们是很好的,如果你通过建立一个新的应用程序来捕获它们更好。
大部分公司花了太多的时间提倡大数据,但是却几乎没有花时间去想清楚哪些数据才是正确的有价值的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27