你不需要大数据,你需要的是正确的数据
你需要的并不是大数据,而是正确的数据。以Uber为例,Uber每天都能收集到海量数据,但Uber会分析全部数据吗?不会,它只用那些能让产品更快连接乘客和司机的关键数据。
问三个问题去挖掘你做决策所需要的正确数据:
哪些地方在浪费资源(时间、金钱、人力、原料等)?
如何自动化地减少浪费?
针对1与2,需要哪些数据?
以下是全文:
大数据这个词已经无处不在。无论是大企业、小企业、传统行业、新兴行业,每一家公司都加入了大数据的浪潮,好像有了大数据就能解决所有问题。
企业通过社会、天气、政府数据来预测供应链中断。大量的用户数据被各个网站收集利用,一些公司甚至开始利用大量的文本交流数据建立算法,从而与客户进行对话。
但现实的情况是,我们对大数据重要性的痴迷,往往会产生误导。是的,在一些情况下,从数据中能获取有价值的东西,但对于创新者来说,数据量和规模不是关键的因素,找到正确的数据才是关键。
关键不在于数据的大小
在谈到大数据作用的时候,我们总是拿Uber来举例,他们好像是用大数据获得成功的最典型的例子。毫无疑问,Uber从数据中获得了财富。依靠他们的应用,Uber从司机和乘客那里获得了实时的数据,让他们能够知道何时、何处人们对车辆有着较高的需求。
但Uber的成果并不是依靠他们所采集的大量数据,这些大数据使公司能够进入新的市场,但Uber的成功来自非常不同的东西,小的、但是正确的数据:车辆调度数据。
在Uber诞生之前,我们打的是传统的出租车。虽然传统出租车看上去与互联网没有什么关系,但是其实它们才是一种依靠大数据的东西。原因是,传统出租车依赖的是“人眼网络”:无数人站在城市中的某一个点,在看到出租车后马上招手。虽然貌似与信息科技无关,但是实际上人们在打车的过程中,同样使用了计算,人脑的计算:我们在大脑中收集并且分析数据。
Uber提出了一个更优雅的解决方案,人们不再需要自己跑到街上去用眼睛收集数据,不用再用大脑去处理数据,而是让Uber为我们提供正确的数据来完成打车任务。城市中谁需要打车?他在哪里?离他最近的车在哪里?需要多长时间能接到乘客?正是凭借这些正确的数据,Uber和滴滴才得以成功的在出租车行业内掀起了革命。
Uber的优雅解决方案是停止运行可视化数据-生物的异常检测算法,只需要正确的数据来完成工作。城市里的人需要搭车,他们在哪里?这些关键信息让Uber、Lyft、滴滴出行彻底改变了一个行业。
用正确的数据完成工作
有时候正确的数据规模也很大,也有的时候正确的数据规模很小。对于创新者,关键在于哪些关键的数据对企业最有帮助,要找到正确的数据,我建议你思考下面三个问题。
问题1:是什么在浪费公司的资源?
大部分汽油都在日常运营中浪费大量的资源。拿鲜花零售业来举个例子,大多数花店中50%的库存最终都会被浪费掉。正因如此,才产生了UrbanStems和Bouqs这样的鲜花配送服务,它们通过正确的数据帮助花店减少浪费。
“哪里有浪费,哪里就有机会”。无论你是工业生产、零售还是法务调查公司,搞清楚哪些因素会浪费你的资源,都能够帮你找到正确的数据。
问题2:如何通过自动化来减少浪费?
在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。人类擅长于做某些类型的决定,比如在品牌营销方面,这部分应该交给人类解决。
但是当涉及到做简单的重复性经营决定的时候(比如把出租车派到每个地方,如何给产品定价,向花店订多少鲜花),机器比人更擅长。虽然有许多传统的人类做决定的商业模式是可预测的,现在我们能分辨更多的数据,来进行自动化。
例如,有传言称亚马逊正打算取消所有的人工定价团队,让算法来给大部分商品进行定价。在零售商眼里,这是完全不可思议的行为。但是如果亚马逊的算法能够胜任定价工作,它将为亚马逊减少成本、库存,以及推出更好的可预测的新产品介绍,这一切将会产生巨大的竞争优势。
问题3:你需要哪些数据来完成这一切?
只要你理解了传统系统当中的浪费,并且知道了浪费造成的后果,最后一步是去问一个简单的问题。如果你可以有任何数据来帮助你做出完美的决定,它会是什么?
在Uber这个例子里,为了完成自动化指派司机工作,从而减少资源的闲置,他们需要知道潜在的乘客可能在城市的哪些位置。另一个例子是通用电气旗下的产业互联网软件Predix,公司在机器发生故障前提前知道,以减少维护工作的成本,以及减少停机时间的浪费。对于寻求降低成本的保险公司,他们想知道一个糖尿病患者血糖下降的时候,以帮助自动化进行围绕病人的干预措施,减少不善疾病的影响。
这就是你所需要的数据,通过处理大量的信息找到他们是很好的,如果你通过建立一个新的应用程序来捕获它们更好。
大部分公司花了太多的时间提倡大数据,但是却几乎没有花时间去想清楚哪些数据才是正确的有价值的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03