
大数据公司的数据源是未来估值的最重要依据
大数据发展浪潮席卷全球,资本也敏锐追逐着高增长市场。尽管资本市场上对同一家公司的评判标准不一而足,但是对大数据公司而言,探究其成长性的本质,只有一个标准——数据源。
数据源是大数据公司“命脉”
中国的大数据行业,“西学东渐”与本土创新并存。行业内的创业公司有的走西方的成熟模式,技术领衔,主要为大数据落地解决“技术上如何实现”的问题。这一类公司待字“实验室”,是行业的“打工者”,仅作为一个环节,服务于大数据解决方案的设计方,无力左右大数据应用能否最终落地解决实际问题,这使得技术公司实现商业价值的路径颇为被动。
有前景的大数据公司,应该掌握“人无我有”、“人有我优”的数据源,并打通大数据应用落地过程中的每一个关键点,让海量数据源有目的、有路径地进行碰撞匹配,激发出价值。由于数据源是产业链的源头,是发展大数据必然的起点,于是,掌握了数据源的大数据公司“有米可炊”,有“食材”可用,这为后续发挥本土创新提供了无限的可能性:通过吸纳现实需求,提供行动有效的解决方案,更从需求端促发大数据技术的研究开发。
得数据源者,得天下
拥有数据源的大数据公司,将在行业内愈发扮演举足轻重的角色。它联通了各自为政的数据孤岛,实现了社会各领域全行业数据的整合,带动硬件生产商按照数据采集、传输、存储之需求供给服务器,促使软件商研发匹配的数据预处理、分析挖掘、大数据可视化等软件产品,同时,激发变现大数据交易融通的新思维。
是否拥有数据源、数据源保有量以及开发利用水平,成为决定大数据公司未来发展前景、是否具备可持续市场竞争力的关键。随着中国政府数据开放共享的步骤加快、国家大数据战略逐步推进,具备数据源优势、善于在海量数据中挖掘价值的大数据公司,成为行业翘楚只是时间问题。
优质资本已先发布局大数据产业
基于此,投资界将更多目光关注在“数据源”这一关键词,视数据源为谋定大数据公司未来估值最重要的依据,就不足为奇了。那么数据源究竟在哪里呢?
中国有70%的数据是在政府手中,而其中又有80%的政府数据待字闺中,未被开发。所以目前市场上,拿政府大数据项目是所有大数据公司的目标。但是,如果没有技术基础、应用基础,也很难获得政府的青睐,一些技术力量薄弱,场景设计研发能力不强的大数据公司正在逐渐退出市场,而那些拥有数据源的应用类大数据公司,确实获得了中国资本市场更大程度的青睐。2015年曾经发生一起中国大数据创业公司融资史上一件里程碑事件——2010年成立的九次方大数据,先后得到了建银财富、博信资本、东方证券、IDG资本、复朴投资、德同资本、初灵基金、当代东方、键桥通讯等18家基金的投资,两轮融资数额近10亿元,投资规模迄今为止仍然是大数据领域之最。而投资界看好九次方大数据的正是因为对方掌握着核心数据源。
《促进大数据发展行动纲要》计划,中国“到2020年,培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业”。各级政府在充分发挥积极性,密集释放政策利好,投资界更是在争分夺秒、细致入微地甄选、观察,判断哪些大数据企业将在“十三五”关键的五年间,脱颖而出,成为国际知名的中国大数据品牌。
据了解,该公司在数据源储量、软件著作权专利数量、开发应用场景能力、服务省市地区数量等多个维度领先同业。
《大数据时代》的作者维克托·迈尔·舍恩伯格预言“世界的本质是数据”。大数据是中国的战略性新兴产业,投资界持续看好大数据产业的发展未来,这种趋势明显增强。据不完全统计,至2016年10月底,2016年中国大数据行业有184家企业获得投融资。数据源愈发成为投资界对大数据公司未来估值的最重要依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16