
大数据驱动智能制造 物联网引爆工业革命商机
从目前智能制造发展的情况来看,和人工智能、云计算、物联网、传感器、网络安全、边缘计算、大数据等七大产业密切相关。业内人士表示,人工智能和传感器作为智能制造的核心控制技术,后期发展空间巨大。边缘计算、云计算、物联网、大数据等产业将智能制造的数据共享互联,建立起网络化的大环境。最后,网络安全保证工业互联网的数据安全。
在信息为王的经济发展时期,数据所到之处必然会触发全产业链的创新与变革。谁利用“大数据”的思维,谁就能赢得主动,赢得先机,占领发展的制高点。大数据就是打开未来通道的最权威与最科学的依据。数据与数据的聚核,所迸发出来的价值或将激活万亿产值。
智能制造将带动全产业和全领域的传感器应用和发展,从而成为新经济增长的巨大动力。同传统的智能化工厂不同,智慧工厂将实现工程技术、生产制造、生产供应和销售的全流程智能化;同时,还将带动智能电网、智能物流、智能建筑、智能移动设备和智能产品领域的快速发展。基于此,霍尼韦尔大中华区研发副总裁兼首席技术官张大可认为,先进制造业、先进物流交通是今后五年投资的重点,市场规模将会达到2500亿美元。
据国家工信部科技司巡视员卢希介绍,目前我国物联网产业规模已达到7500亿元,在智能交通、车联网、医疗健康等领域,已形成一批成熟的物联网运营服务平台和商业模式。
IIoT推动全球制造业转型
物联网(IoT)无疑是近两年来在科技产业界被讨论最多的热门话题,这个名词在消费性应用市场或许有大部分仍是天马行空的想像,以及因为业务模式刚起步、而显得有些“虚无飘渺”的商机,但是在工业应用领域,物联网却有一个更清晰的轮廓与更具实质性的内涵。
市场研究机构MarketsandMarkets预测,所谓的“工业物联网(IndustrialInternetofThings,IIoT)”市场规模到2020年可望达到1,510亿美元的规模,2015到2020年间的复合平均年成长率(CAGR)为8.03%;而推动该市场的主要因素,包括相关半导体与电子技术的进步、云端运算技术的发展、IPv6标准化以及全球政府的政策推动等等。
藉由实现工业自动化技术以及智慧工厂概念,IIoT将是推动全球制造业转型的关键,德国提出的“工业4.0”──也就是第四次工业革命──即为其中的大规模策略之一,其他如美国、中国与印度等其他世界制造业大国,也各自拥有试图利用智慧科技来提升制造业效率、扩展营收规模与全球影响力的类似举措。
布署工业物联网所需的硬体技术其实都已经就绪,关键在于将这些硬体结合在一起、搭配适合不同应用之软体,以实现高效率智慧工厂的整体性解决方案;而由于工业物联网也包含电网架设、大量资料运算分析与传输,相关方案的稳定性、安全性、可靠性也是缺一不可。此外,标准化以及一个能让其他产业链参与者共同合作的平台,会是其永续发展基础。
在制造业、IT产业与IC产业都具备丰富经验以及完整产业生态的台湾,可说拥有抢先掌握全球工业物联网商机的得天独厚条件;不过传统制造业者想转型智慧工厂,往往会因为不熟悉IT领域技术而不知该从何着手;有意切入工业物联网领域提供相关服务的IT业者,需要寻找能满足相关应用需求的最新软硬体技术与市场趋势;IC厂商要在工业物联网市场占据一席之地,则得从平台化的概念着手,以提供客户完整的解决方案。
机器人自动化市场越来越大
随着劳动力成本上涨,工业机器人也迎来了顺势发展的良机。不过以往看到生产车间的机器人大多是独臂侠,而未来机器人的发展将会根据专业化研发出分工明确的机器人,并且与3D打印、工业VR等充分结合,形成相互协作,共同分享的智能制造新模式。
目前,中国正在发展工业制造2025,新形势下工业领域势必会采取一系列动作。相关研究报告显示,2015年中国工业机器人市场,其中以六轴多关节机器人为最,占总体销量的46.2%。预计未来几年将会维持30%以上的高增长率。当然这离不开现在的传统工业所处的转型阶段需要智能技术的力量加以推动,由此所衍生巨大的需求空间。又加之如今的消费机器人有下行趋势,有商家都已纷纷瞄准工业机器人行业,里应外合对手遇“冷”种种条件都适于其发展。
对于目前中国工业机器人四大家族瑞士的abb、德国的库卡、日本的发那科和安川电机来说,若想突出重围还得靠先进的技术来填补自动化生产线的空缺。尤其是汽车及电子行业,随着自动化水平不断提高,机器人的自动化市场也越来越大。
现在所谓的工业机器人实际上是一个Manipulator,就是一个工业机械臂,没有手,更无关乎智慧。而要想在中国市场占据一席之地,则必须发展心灵手巧的双臂机器人和多臂机器人。
那么怎样的机器人才算得上心灵手巧?最简单的就是双臂机器人,就像人一样工作,但是作为一个智能机器人来讲,可以仿造动物界的多臂多足。包括全工位的双臂机器人,一个机器人可以做八个工位的工作,是不是有种八爪鱼的既视感呢。换言之,心灵手巧就是智能引擎的代名词,正如现在比较流行的“工匠精神“及”私人定制“这就不是生产线上输出的了,而是一个智能中断和CPS网络控制器以及云制造平台综合的、有智能和柔性动作的机器人,从而实现真正的个性化制造。
如此看来,如果所流水线的兴起将工业制造推向程序化,提高了效率,那么具有柔性机械手和心灵手巧的手臂的机器人将真正实现智能化制造,这不仅仅助推制造进入“分享经济“,更是机器人发展历程的一次重大突破。
大数据驱动智能制造
当前,以信息技术与制造业加速融合为特征的智能制造正风起云涌。但信息化与智能化到底该如何融合?大数据又与制造业有何关联?对此,清华大学数据科学研究院执行副院长韩亦瞬在论坛上给出回答:工业大数据是“智能”的来源,是东莞制造业升级的重要驱动力。
韩亦瞬解释,无论是德国工业4.0,还是美国的工业互联网,其核心都离不开工业大数据。在美国,离散型制造积累的应用前景是最被看好的,甚至排在政府服务、通讯传媒领域之上,流程型制造业的潜力也排在银行业、健康服务之前;在德国,无人工厂只是表象一部分,德国工厂已经可以做到两家竞争对手合作研发,甚至车间互换、共享,画地为牢的圈子、界限被打破,这都离不开大数据的支撑。
“大数据是智能化的来源,未来制造企业的运营过程,或者说产品的全生命周期,都将由大数据串联起来。”韩亦瞬称。他以知名工程机械三一重工和私人定制工厂青岛红领为例。前者已经建成了5000多个维度、每天2亿条、超过40TB的大数据,可以及时监测每台机器的运转情况、受损等,提前做好主动服务。单单依靠其国内20万台设备,甚至可以成为我国宏观经济研判的重要依据。后者则探索了私人定制的C2M、M2B等模式。“我看到东莞企业已经在往这个方向探索,值得点赞。”韩亦瞬称。
北京工业大数据创新中心副主任陈晨也表示,对于工业企业来说,初级的大数据能让企业进行基础统计分析,这样对降本增效、新建业务模型有很大的好处,企业既可以做减法,依靠数据对标,减掉制造环节不必要的成本消耗;也可以做加法,例如拓宽业务渠道。而高级的工业大数据应用,则可以让企业先知先觉,开始做乘法、除法,比如预先判断企业的生产运行,以及整合供应链等。
对于台下众多来自莞企的听众,与会专家也纷纷支招,今后东莞要走出加工环节,向前端设计研发和后端服务延伸,也得通过工业大数据串联。特别是当前的东莞制造业,其信息化系统还不能够很好地支撑日常业务运转,管理层必须在战略意识层面,做出从2.0到3.0的转变,在内部制度、流程、组织架构与文化上构建与工业大数据相适应的架构。
据悉,目前东莞市已经启动了工业大数据示范项目培育工作,开始了项目申报、审核等工作,也发掘出技研新阳等一批大数据建设有声有色的企业,初步具备智慧工厂的一些功能、特点。更重要的是,东莞也出台了一系列政策、规划。
市经信局副调研员陈杞渭在会上表示,近几年,东莞市先后出台了《东莞市发展物联网建设智慧东莞规划(2013-2015年)》《关于加快推进东莞市云计算发展的实施意见》《东莞大数据行动计划(2015-2016年)》等政策文件,开展了东莞市大数据相关的调研以及若干专题规划等工作,初步指出大数据发展和应用的方向,为大数据发展提供了政策保障。
值得一提的是今年10月底,东莞在《东莞市大数据发展实施方案》中,提出东莞在2018年将初步建成大数据发展体制机制,完成政务云数据中心和政务大数据库建设等目标。其中,东莞将运用大数据驱动智能制造加快发展,推动互联网与制造业融合发展,支持工业企业开展设备、产品以及生产过程中的数据自动采集和大数据分析,形成制造业大数据存储中心和分析中心,建设一批数据工厂和智能工厂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15