京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面对大数据,你可以害怕
在互联网日益繁荣的今天,越来越多人的工作、生活、社交都逃不开百度、腾讯、阿里、360等大小互联网企业甚至个人的全方位数据监控。当这些网站比你妈还更了解你的时候,你感觉到的不是关怀,而是恐怖。
腾讯拿到民营银行的执照,互联网圈内同行议论纷纷的同时,最害怕的就是招商银行之类把客户服务根植在微信的金融机构了。在大数据时代,数据收集将是商业经营的起点,你会安心的把自己的数据交给自己的竞争对手吗?
不光是企业,其实每个人都要害怕大数据。亚当和夏娃在伊甸园吃了苹果之后,第一件事就是给私处遮上树叶。大数据时代,不小心拍得照片可以让你一夜成名,你的想法、行为、过去都被商家记录,你其实每天都生活在天体海滩。
现在小崔和方舟子还在争辩,转基因是世界人口爆炸的福音还是对人身体的伤害?这个辩论,时间会给出答案,但是大数据更是一个值得大家争辩的事情,因为大数据涉及了我们的生活习惯和社会法则。大数据带来的副作用,大大超过了以前人类发明的范畴。
商业的大数据就是通过电子化数据的收集,包括手机轨迹,通话,信息,上网行为,购买,旅游,金融,等全方位的数据收集,对你进行分类、判断,推销。作为国内电商时代的开启者,淘宝上云集了数量惊人的数据:每一笔订单不仅包含顾客姓名、收货地址、下单时间等基本信息,甚至连顾客什么时候开始浏览某一件宝贝,跟售前客服讨价还价的过程,在几点几分下单成交,都有全部记录。通过这些信息记录,可以鉴别出你喜欢的东西,推断你的身份、收入、银行存款、家庭事业状况等等。
在互联网日益繁荣、BAT三巨头触角无所不达的今天,越来越多人的工作、生活、社交都逃不开百度、腾讯、阿里、360等大小互联网企业甚至个人的全方位数据监控。
有许多人认为掌握了越多的数据,越详细的数据,就有机会通过“大数据”分析法来获得一个金矿。但当这些网站比你妈还更了解你的时候,你感觉到的不是关怀,而是恐怖。
现在的大数据分析,缺乏取样标准,不代表真实的因果关系。
在传统的统计学里面,最重要是数据的采样。比如一种药物的有效性,需要两组对比人群,在严密的实验条件下,长期跟踪,才能都出结论。现在的大数据分析,往往是数据的堆积和简单的关联分析。从严格的科学来讲,是一门伪科学。因为数据只是数据,只是过去,简单的数据积累不说明任何问题,不能真正判断一个人,预测一件事。
如果基于大数据武断营销,那就是真正的恐怖了。从以下几个方面,就可以看出为什么大数据会让你害怕:
1. 害怕身份被盗用
在移动互联网时代,我们的朋友更多出现在网上。社交网络、QQ、微信、微博取代了面对面的人际交流,虚拟交流也在改变世界和人。基于大数据的应用流行之时,将有大量的人借用和盗用网络身份,达到个人目的。也许你从来没有离开老家,你的网络大数据却涉嫌犯罪。
2. 害怕数据造假
在一切看数据说话的今天,每个人、每个企业和商家或多或少都在改变数据。因为各种利益关系错综复杂,报出来的数据往往都应景而异。大数据时代,有意的网络数据造假也能成为一个商业领域,用来帮助别有用心的人或商家制造数据。
3. 害怕数据框定
比大数据更复杂的还是人。从心理学的角度,让人做出选择,就意味着要舍弃其他的可能性,这是一件异常困难的事情。人的认识和选择会应为各种原因,产生跳跃性的变化。如果按照数据分析,把人丢进一个箩筐终生定格,据此给他不光是特定类的商品,进而决定他能否从事某件事,限制他的网络视野,也是很不合理的。
例如,把大数据作为广告精准投放标准,虽说有一定合理性,但也并不绝对,这是由于人类的购买心理十分复杂。比如说有个消费者只是浏览了一辆汽车,跟着是汽车广告通过各种方式和渠道的狂轰滥炸,除了骚扰,并没有效果。
4. 害怕数据不公和数据歧视
完全依赖大数据进行分析、对人进行分类,其实将触及社会不公和歧视。作为商家,考虑到经营成本、营销利润和效率,其实暗地里都会打着各种小九九,而不是表面上把各类消费者一视同仁。毋庸置疑,高端消费者是各类企业的最爱,而低端消费者却让企业皱眉。但现在呢?每个人的消费记录和各种数据都被电子化的方式采集和收集着,一举一动逃不过大数据的记录。对保险公司营销员来说,你这个人的所有信息数据可以一览无余,不用你开口,他已经判断出是不是需要让你参保、保费标准等等;消费数据记录和售后服务记录,甚至都能让卖家挑选买家,把你列入顾客黑名单也不是不可能。
不可避免的,一旦成为数据穷人,那么就会面临歧视服务,所有消费者都是平等的这句话将成为历史。
5. 害怕数据垄断
目前的商业格局是:两方数据垄断势力正在形成,一方是国营企业,如电信、电力、医院等,一方是以BAT为中心的互联网大佬。特别是后者,在广泛收集数据之后,已经以大数据为依托,开始布局全行业的垄断性的经营,范围包括电子商务,教育,医疗,物流等。而这些垄断一旦形成,将大大降低中国企业的创新能力和竞争能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22