
数据学科受企业追捧 这三大职业吸金力强
数据科学并不属于什么全新学科,但其最近却随着大数据技术的快速发展而日益得到关注。顾名思义,数据科学的主旨在对研究数据——更具体地说,用于指导如何更有效地理解、存储及操纵数据。考虑到众多企业开始意识到数据的社会与经济价值,而处理相关数据任务亦存在着巨大挑战,因此合格的数据科学家开始成为人才市场上的热门资源。
通常来讲,获得数据科学硕士等高级学位足以把大家送入相关职位。数据科学家能够在与大数据相关的任何领域找到工作,包括高校、医疗卫生、科研院所、政府机构等等。下面,我们一同了解其中的三项具体职业发展道路。
1. 数据科学家
人才市场招聘信息中给出的头衔通常为“数据经理”或者“统计学家”等。
无论具体名称如何,数据科学家们需要利用自己的数学及编程技能对数据进行直接处理。数据科学家们需要立足自身职位追踪贯穿项目的全部数据,构建数据存储空间并组织预测建模流程,最终将发现报告给决策者。因此,数据科学家通常需要掌握扎实的编程语言,特别是Python与SQL。
数据科学家目前的平均年薪为11万5千美元,不过入门级从业者的预期薪酬大概在8万美元左右。到2024年,市场对于数据科学家的需求将增长30%,这意味着仍有大量职位等待着后来者。
2. 数据工程师
数据工程师又被称为数据架构师或者数据库管理员,其职能与真正的数据科学家略有区别。事实上,部分数据科学家可能认为,该职位只需要普通的计算机科学学位即可胜任——当然,拥有数据科学专业背景更好。
与其他类型的工程师类似,数据工程师同样需要了解如何利用素材构建解决方案。数据工程师需要熟练掌握数学方法、编程与大数据技术,且能够娴熟地在数据集中处理包含的信息,同时清理不必要或者混乱的信息内容。
同样,数据工程师也应该拥有丰富的Python与SQL经验,而基于Java类框架(如Hadoop)相关技能亦能够让大家在工作中更加如鱼得水。
此类职位的平均入门薪酬为8万1700美元,而行业中的顶级人士能够拿到10万美元。数据工程师职位的增长速度相对较慢,到2024年增量约为11%,但仍高于整体人才市场的平均水平。
3. 数据分析师
尽管“分析师”与“科学家”这两种称为间的界定并不明确,但数据分析师明显与商业实践关联更为紧密。一般来讲,数据分析师可以顺利上手“某某分析师”类职位,包括项目分析师、市场研究分析师、信息安全分析师、商务分析师等等。
数据分析师职位负责帮助未经过数据科学训练的人员理解数据内容。通过创建有吸引力且易于理解的图形、图表或者简单描述语言,数据分析师能够顺利将信息传达给他人。除了统计相关技能,数据分析师还需要具备将数据转换为业务术语及策略的能力。另外,SQL与Excel技能同样必须掌握。
也许由于对于技术性知识的要求相对较低,因此数据分析师的平均年薪也较低,为6万5千美元。不过由于与业务更为贴近,因此分析师们更有机会在行政领域有所建树,从而将自身薪酬提升至六位数。另外,这一领域的职位数量增长率很高,到2024年就业机会将增加30%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01