
从数据分析的角度来看创业项目的可行性
创业的人很多,想创业的人更多,但是创业失败的人更是多如牛毛。创业失败的原因固然有很多,但是项目本身的推演、数据上去分析可行性,是一个重要的观察角度。
记得有一次我去深圳软件产业基地参观,中午在附近的饭店吃饭,隔壁桌在谈论开店的问题,又是连锁又是020的。还有一次,和几个伙伴线下见面,约在咖啡厅。我们在讨论如何打造高逼格社群的话题,隔壁桌在讨论如何用O2O的模式打造家庭影院。如果你也去深圳的软件产业基地附近的咖啡厅,或者北京五道口附近的咖啡厅,相信你也会高概率的碰到别人在讨论创业的问题!
创业的人很多,想创业的人更多,但是创业失败的人更是多如牛毛。创业失败的原因固然有很多,但是项目本身的推演、数据上去分析可行性,是一个重要的观察角度。
先来说一个大家都听过但是很多人都犯这种错误的例子:老王决定创业,他选了一款经营了几十年的湘西酱香饼,采用线上线下结合的模式,线上有APP+网站+公众号+自媒体,线下是门店+档口+路边摊,不管你在中国的哪个角落,只要一键下单20分钟内送货上门。如果每个中国人每天吃我一次酱香饼,拿的额营业就是十几亿啊!
很多故事和商业模式,写的比这个故事精彩一百倍,但是本质上都是犯了同样的错误。大而全,没有任何定位,没有任何数据支撑,有的只是一厢情愿的意淫。
越是复杂的商业模式和故事,往往难以成功;越是简单的商业模式,做起来轻松,更容易成功!
数据一:产品的单价和利润
在前面的例子中,酱香饼的人均单次消费是2-5元,利润率可以达到50%。这样单价的商品只能采取路边摊的方式销售,用门店或者档口来卖酱香饼,难道要走黄太吉煎饼的路子?疯狂的讲故事,疯狂的造概念,违背商业规律的泡沫迟早会破灭。
最简单的商业模式,其实就是卖产品,而且产品的利润要高。是300-10000元。利润高,才能承担得起各种成本。有人说,我是做平台的,只要有足够多的用户进来,那我轻松的赚大钱,你看国内钱的互联网公司,腾讯、阿里、百度,不都是这样吗?
这就叫只见贼吃肉,不见贼挨打。互联网每年都会造出火爆的概念,然后一大堆人跟风去做,最后死无葬身之地!
2006年的分类信息,2007年的视频网站,2008年的SNS社区,2009年的B2C网站,2010年的团购网站,2012年的移动APP,2013年的O2O网站,2014年的P2P金融,2015年的微商面膜,概念炒火了,N多人进入,最后剩几个。2016年的直播一定是重复这样的故事!
数据二:产品的用户群体
前面提到的酱香饼,从表面来看,每个人都是酱香饼的用户。实际情况是,很多人一辈子都没吃过酱香饼。首先要是城市居民吧,其次要喜欢吃吧,第三要看你摊位附近的人流量吧,第四这东西应该没人会让送货上门吧?
数据三:竞争对手
不管哪个领域,都是有竞争对手的,哪怕是巨头垄断,也不可能占据的市场份额。你是第一个切入这个市场的,马上会有别人也看中这个市场。从货源开始,到销售,到服务,到用户的选择,每个环节都是竞争。如果我占据多少市场份额,那么每年的销售额就能达到多少。实际上不存在这样的好事,客户都是一个一个积累的,一个一个维护好的。
数据四:盈利周期
卖产品为啥是最简单的盈利模式?因为环节很少,拿到货,卖出去就赚钱了,就实现盈利。如果是做平台,首先得开发平台,然后得达到一定的用户规模才能实现盈利。
说了那么多,其实本文几句话就可以总结:
1、卖产品是最简单的赚钱模式。
2、用户群里定位越精准越好成交。
3、任何领域都有竞争对手。
4、一定要缩短盈利周期。
自从2015年李克强总理喊出来的:“万众创业,大众创新”后。创业的人多,创业的项目五花八门。怎么选择创业项目,怎么运营创业项目,是刚开始就必须设计好的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23