京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从数据分析的角度来看创业项目的可行性
创业的人很多,想创业的人更多,但是创业失败的人更是多如牛毛。创业失败的原因固然有很多,但是项目本身的推演、数据上去分析可行性,是一个重要的观察角度。
记得有一次我去深圳软件产业基地参观,中午在附近的饭店吃饭,隔壁桌在谈论开店的问题,又是连锁又是020的。还有一次,和几个伙伴线下见面,约在咖啡厅。我们在讨论如何打造高逼格社群的话题,隔壁桌在讨论如何用O2O的模式打造家庭影院。如果你也去深圳的软件产业基地附近的咖啡厅,或者北京五道口附近的咖啡厅,相信你也会高概率的碰到别人在讨论创业的问题!
创业的人很多,想创业的人更多,但是创业失败的人更是多如牛毛。创业失败的原因固然有很多,但是项目本身的推演、数据上去分析可行性,是一个重要的观察角度。
先来说一个大家都听过但是很多人都犯这种错误的例子:老王决定创业,他选了一款经营了几十年的湘西酱香饼,采用线上线下结合的模式,线上有APP+网站+公众号+自媒体,线下是门店+档口+路边摊,不管你在中国的哪个角落,只要一键下单20分钟内送货上门。如果每个中国人每天吃我一次酱香饼,拿的额营业就是十几亿啊!
很多故事和商业模式,写的比这个故事精彩一百倍,但是本质上都是犯了同样的错误。大而全,没有任何定位,没有任何数据支撑,有的只是一厢情愿的意淫。
越是复杂的商业模式和故事,往往难以成功;越是简单的商业模式,做起来轻松,更容易成功!
数据一:产品的单价和利润
在前面的例子中,酱香饼的人均单次消费是2-5元,利润率可以达到50%。这样单价的商品只能采取路边摊的方式销售,用门店或者档口来卖酱香饼,难道要走黄太吉煎饼的路子?疯狂的讲故事,疯狂的造概念,违背商业规律的泡沫迟早会破灭。
最简单的商业模式,其实就是卖产品,而且产品的利润要高。是300-10000元。利润高,才能承担得起各种成本。有人说,我是做平台的,只要有足够多的用户进来,那我轻松的赚大钱,你看国内钱的互联网公司,腾讯、阿里、百度,不都是这样吗?
这就叫只见贼吃肉,不见贼挨打。互联网每年都会造出火爆的概念,然后一大堆人跟风去做,最后死无葬身之地!
2006年的分类信息,2007年的视频网站,2008年的SNS社区,2009年的B2C网站,2010年的团购网站,2012年的移动APP,2013年的O2O网站,2014年的P2P金融,2015年的微商面膜,概念炒火了,N多人进入,最后剩几个。2016年的直播一定是重复这样的故事!
数据二:产品的用户群体
前面提到的酱香饼,从表面来看,每个人都是酱香饼的用户。实际情况是,很多人一辈子都没吃过酱香饼。首先要是城市居民吧,其次要喜欢吃吧,第三要看你摊位附近的人流量吧,第四这东西应该没人会让送货上门吧?
数据三:竞争对手
不管哪个领域,都是有竞争对手的,哪怕是巨头垄断,也不可能占据的市场份额。你是第一个切入这个市场的,马上会有别人也看中这个市场。从货源开始,到销售,到服务,到用户的选择,每个环节都是竞争。如果我占据多少市场份额,那么每年的销售额就能达到多少。实际上不存在这样的好事,客户都是一个一个积累的,一个一个维护好的。
数据四:盈利周期
卖产品为啥是最简单的盈利模式?因为环节很少,拿到货,卖出去就赚钱了,就实现盈利。如果是做平台,首先得开发平台,然后得达到一定的用户规模才能实现盈利。
说了那么多,其实本文几句话就可以总结:
1、卖产品是最简单的赚钱模式。
2、用户群里定位越精准越好成交。
3、任何领域都有竞争对手。
4、一定要缩短盈利周期。
自从2015年李克强总理喊出来的:“万众创业,大众创新”后。创业的人多,创业的项目五花八门。怎么选择创业项目,怎么运营创业项目,是刚开始就必须设计好的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11