统计建模和机器学习的区别之我见
最近我多次被问到统计(尤其是统计建模)、机器学习和人工智能之间有何区别。其实这三者之间在目标、技术和算法方面有很多重叠的部分。引起困惑的原因不仅仅是因为这些重叠部分,也是因为我们被很多非科普文中的时髦词儿给迷惑了。
统计建模最基本的目标是回答一个问题:哪一种概率模型可以产生我所观察到的数据?因此你必须:
• 从一个合理的模型群里挑出候选模型
• 预估未知变量(参数,Aka拟合模型到数据中)
• 比较拟合模型与其他备选模型
举个例子,如果你的数据需要计算,例如流失客户数或者细胞分裂数,那么泊松模型(Poisson)、负二项模型或者零膨胀模型(zero-inflated model)都可能适用。
一旦某统计模型被选定,那预估模型将用于测试假设、创建预测值以及置信测量。预估模型将成为我们解析数据的透镜。我们从未宣称选定模型就能产生数据,但是我们能观察它基于某验证推理在随机过程所获取的合理近似值。
验证推理是统计建模的一个重要部分。举例而言,要决策到底是哪一种或者哪三种医疗设备可以让病患获得最好的治疗,你也许会感兴趣使用一个模型,该模型能捕获某种数据机制来判断该病患在接受不同治疗所获得的不同结果。如果某个模型可以很好地捕获数据产生机制,那么其也可以在那些被观察数据区间内做出很好的预测,甚至可能预测出新的观察结果。
经典机器学习
经典机器学习是一种数据驱动型技术,受模式识别启动,专注于回归算法和分类算法。其潜在的随机机制通常并没有作为最首要一项关注点。当然很多机器学习技术也能通过随机模型和回归计算来定义,但是数据并不被认为是由其模型直接生成的。因此,最重要的关注点是识别到底是执行哪项特定任务的算法还是技术鉴定(或者集成方法):也就是说客户到底最好被分段于K(数据集群或聚类),还是DBSCAN,或者是决策树,或者是随机森林,又或者是SVM?
简而言之,对统计人员来说模型是第一位的,对机器学习者而言,数据是第一位的。因为机器学习的终点是数据,而不是模型。将数据分离出来去做训练集和测试集的验证技术(鉴定方法)是很重要的。一个解决方案的质量高低并不仅仅依赖p-值,而是需要证明这个解决方案在以前不可见数据中是否表现良好。将一个统计模型拟合到一个数据集,或者将一个决策树训练成一个数据集,将会需要融合一些未知值的预估值。该决策树的最佳分割点取决于从属变量的条件分布参数的预估值。
对我而言,没有什么技术被证明可以自我学习。训练才是成型某种学习的必要过程,换句话说,这意味着要获取一项新的技能技术,训练就是学习的一部分。训练深度神经网络取决于输入数据的权重和偏差,如果它学习分类,而该网络就变形成为一个分类器。
现代机器学习
机器学习系统如果不是编程去执行一个任务,而是编程去学习执行一项任务,那么这就是一个真正的学习系统,我把这叫做现代机器学习。就像经典机器学习的变体,这也是一个数据驱动型的实践。但不一样的地方是,现代机器学习不仅仅是依赖于丰富的算法技术,几乎所有的这类机器学习的应用都基于深度神经网络技术。
这个领域我们现在倾向于称它为深度学习,一种机器学习的细分,经常应用于人工智能,也就是说让机器去执行人类的任务。
数据扮演什么角色?
现在我们可以通过数据所承担的角色来区分统计建模、经典机器学习和现代机器学习。
在统计建模里面,数据引导我们去选择随机模型,来形成对不同问题概率的抽象表达,例如假设、预测和预报。
在经典机器学习里,数据驱动的是对分析技术的选择,如何最佳地执行即将任务,这是数据训练算法。
在现代机器学习里,数据驱动基于神经网络算法的系统,去学习具体任务,系统可以自动判定数据常量规则。在训练神经网络数据的过程中,系统逐渐学习到执行任务,就像某人所说:“是数据在做编程。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03