
大数据、云计算、互联网,这是时下最流行的词汇与话题。能否以及如何将这些新技术运用到城市节能上,是一个很大的启示和挑战。
在第十一届中外绿色人居论坛上,论坛组委会委员、美国能源基金会建筑项目主任、博士莫争春以纽约为例向大家展示了一种可供参考的方向:以行政命令管理的手段,统计城市建筑能耗信息,并全部公开分享,鼓励市场参与数据分析,共同提升城市建筑能效。
莫争春在接受《第一财经日报》记者专访时表示,建筑能耗数据的公开与对标对于城市节能可以起到很大的推进作用,这首先是观念的问题,而非技术问题。
心中有“数”
世界正处于大数据时代。从纷繁复杂、不断爆炸的数据中寻找出任何有效的信息并加以利用,正成为一种共识。
在莫争春看来,国家在制定任何节能政策之前,关键也在于要知道自身的能源数据,要知道自己的“家底有多少”,做到心中有数。但实际上,在建筑行业方面,我国并没有清晰的数据,如何做到心中有数?
当前,国内绝大多数有关建筑能耗的研究及数据统计都只是针对单个建筑,缺乏对城市整体的统计。
莫争春对本报记者表示,虽然现在我国很多省市在做建筑信息能耗监测平台,但并没有哪个城市能确切把所有的建筑能耗搞清楚,也没有哪个城市把收集到的信息加以利用。“我们现在只是把数据收集起来,用图表现出来,但是这不是目标,我们的目标是利用这些信息来做节能。”
由于在中美两国节能领域工作了20余年,莫争春对两国的节能现状非常了解。他认为美国纽约在利用大数据进行城市节能方面有着突出表现。
纽约前市长迈克尔·布隆伯格曾提出纽约到2030年减排30%,而70%的能耗在建筑。为了完成这个目标,迈克尔·布隆伯格就必须摸清大部分建筑的能耗现状,才能对症下药。
据莫争春介绍,迈克尔·布隆伯格通过议会立法,最后要求采取强制性的方式,所有5000平方米以上的建筑,必须将能耗数据公开,否则将会受到相应的惩罚。他只花了2年时间,就掌握了纽约市所有5000平方米以上的建筑(包括住宅和公共建筑)的能耗数据,并能根据能耗强度将纽约市划分区域,由此有针对性地进行节能。
开放与市场化
数据公开的好处在于充分的市场化,可以发动全社会的力量共同推进城市节能。
仍然以纽约为例,迈克尔·布隆伯格的做法催生了一批优质的建筑能效服务公司,创造了新型能耗行业。城市建筑能耗数据需要进行审计,迈克尔·布隆伯格并没有事先设置行政许可,而是放开让市场去做,最终通过市场的力量催生优质的审计公司。
莫争春还介绍,在美国能源部官网上关于所有的住宅、商业建筑、能源供应等相关数据都对外公开,而且政府鼓励公众使用这些数据,尤其是开展竞赛,看谁能够开发更好的使用工具,把公布的数据开发利用得更好,给予奖励。
目前,美国已经出现了大批能源数据分析公司,都是基于上述公开信息做的。也正是由于信息的公开,美国今年有10个城市正在进行着一场信息公开和对标的比赛。
在莫争春看来,基于公共信息分析产生的策略才是城市发展之路。传统模式中,政府控制了绝大部分信息,主导着市场,而封闭、隔离的“信息孤岛”是形成大数据的障碍。现在需要一种新模式,即政府让这些信息在市场中流动,让市场利用信息催生新服务。
“在大数据时代,我们需要的不光是新的节能战略,而是信息的共享。”莫争春表示,公共信息的共享是大数据的起点,这个取决于决策者是否有决心去做。决策者需要意识到能耗数据的公开和对标对推动城市节能会起到很大的作用,而不是将其作为一种隐私或者国家安全问题而保持封闭。
说到底,就是政府需要转变职能,建立、监督、完善能耗公开制度,让市场去做功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08