
大数据应用已成“标配”
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。在人工智能时代,大数据不再只是一次“机遇”,而是成为“标配”。大规模存储和计算平台支撑了大数据挖掘和机器学习的复杂而耗费资源的算法与处理。云计算已成为推动智能时代诸多企业创新及信息产业发展的引擎。
云计算支撑大数据应用
云计算、移动互联网与社交网络是大数据的三大推进器。在过去不到20年的时间里,个人计算设备生成的数据量呈现出惊人的增长态势。而要想处理好这些激增的数据,就需要强大的云存储与计算平台。当大数据和云遇见深度学习,这一计算机科学家朝思暮想了数十载的科技终于不再是无本之木。随着深度学习技术的潜能被充分释放,弈棋程序的胜利以及人们在图像识别、语音识别等领域的连番突破也就顺理成章了。
图像识别
智能手机支持某些看起来很酷很智能的功能,比如人脸检测、根据面孔特征实现身份识别和分类编目等,若没有一流云平台在背后支持,也是不可想象的。
小米手机相册有一些对用户而言相当便利和人性化的功能,例如:用户可以从合影中找到每一张人脸并看到年龄标签;点击“面孔”分栏,所有包含人物的照片便被归入“姓名”影集中;选择其中一张合影,应用还能标示出画面里每个人的姓名……这些功能对于“患有”脸盲症和健忘症的朋友来说非常有用,而且也让手机看起来很“聪明”。但其实,相关的运算过程并不是在手机硬件平台上进行,而是依托于远端的“小米云相册”。
支撑人脸检测与识别这个应用的是其背后的大数据,尤其是强大的云计算和存储能力。其中,人脸识别需要对已知人脸的数据库进行提取,也就是需要依靠强大的存储能力作为支撑。而对于输入的人脸图像或者视频流进行判断,则需要依靠云计算技术才能得以实现。
以围棋人机大战为例,围棋软件AlphaGo和人类六至九段棋手16000次的对局中获得3000万个布点数据,其动用了1920个CPU和280个GPU的高性能计算资源,在一场比赛中消耗的能量是人的300倍。如此巨大的数据存储和计算量,是以前的技术所无法实现的。
无人驾驶
如果没有大数据,世界将会变成什么样呢?让我们在不久前特斯拉无人驾驶汽车车祸中寻找答案。大数据的方法是采用“足够多的数据+简单的模型”来得到更好的结果。因此,想要提高性能,就必然依赖于大数据。数据越多,覆盖量、精密度越高,对模型的依赖就越低,人工智能就变得足够可靠。
“大数据+云”助推ICT腾飞
2015年,我们见证了云计算如何推动消费产品和企业级产品领域的伟大创新,成为不同规模企业的部署对象。如今,云计算已成为推动诸多企业创新的引擎。小米正通过云计算服务全球范围的智能手机用户;猎豹移动通过云计算为全球的用户提供手机安全的保障;WPS通过云为全球的办公用户提供文件的存储和分享。金山云作为国内顶级的云服务商,提供大规模存储和计算平台,支撑大数据挖掘和机器学习的复杂而耗费资源的算法与处理,成为诸多企业创新的引擎。金山视频云平台被视为全球最专注的公有视频云,金山游戏云平台成为国内最大的游戏云平台,已形成完善的游戏产业生态。金山云更多的垂直领域云平台,如医疗云、政务云平台正在成为智慧城市的核心和基础。与此同时,金山云在美国和香港设立了数据中心,以满足美国和东南亚客户的需要。
大数据和云计算将极大地推进我国信息产业发展。当前,人工智能时代正在来临,对于存储和计算能力将产生更大需求。最近五年,人工智能在数据本身已经有了很大的突破。当拥有了海量数据并在算法上有所突破之后,人工智能水平将进一步突破。未来,人们将在人工智能上持续挖掘需求和应用,这需要数据存储和计算能力的支撑。
人工智能已成为信息技术产业的主流与传统行业升级、转型和变革的关键。而算法、大数据、计算资源不仅构成了人工智能的坚实支点,还将成为现实中构建通往全新“智能”之路的能量之源。人工智能飞速发展,大数据和云共存共生、相互促进,一种不一样的思考方式正在成长成熟。大数据和云正在推动人工智能时代的来临,同时拥有大数据和云计算技术储备的企业将在智能时代发挥更大作用,助力ICT产业腾飞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01