京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用已成“标配”
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。在人工智能时代,大数据不再只是一次“机遇”,而是成为“标配”。大规模存储和计算平台支撑了大数据挖掘和机器学习的复杂而耗费资源的算法与处理。云计算已成为推动智能时代诸多企业创新及信息产业发展的引擎。
云计算支撑大数据应用
云计算、移动互联网与社交网络是大数据的三大推进器。在过去不到20年的时间里,个人计算设备生成的数据量呈现出惊人的增长态势。而要想处理好这些激增的数据,就需要强大的云存储与计算平台。当大数据和云遇见深度学习,这一计算机科学家朝思暮想了数十载的科技终于不再是无本之木。随着深度学习技术的潜能被充分释放,弈棋程序的胜利以及人们在图像识别、语音识别等领域的连番突破也就顺理成章了。
图像识别
智能手机支持某些看起来很酷很智能的功能,比如人脸检测、根据面孔特征实现身份识别和分类编目等,若没有一流云平台在背后支持,也是不可想象的。
小米手机相册有一些对用户而言相当便利和人性化的功能,例如:用户可以从合影中找到每一张人脸并看到年龄标签;点击“面孔”分栏,所有包含人物的照片便被归入“姓名”影集中;选择其中一张合影,应用还能标示出画面里每个人的姓名……这些功能对于“患有”脸盲症和健忘症的朋友来说非常有用,而且也让手机看起来很“聪明”。但其实,相关的运算过程并不是在手机硬件平台上进行,而是依托于远端的“小米云相册”。
支撑人脸检测与识别这个应用的是其背后的大数据,尤其是强大的云计算和存储能力。其中,人脸识别需要对已知人脸的数据库进行提取,也就是需要依靠强大的存储能力作为支撑。而对于输入的人脸图像或者视频流进行判断,则需要依靠云计算技术才能得以实现。
以围棋人机大战为例,围棋软件AlphaGo和人类六至九段棋手16000次的对局中获得3000万个布点数据,其动用了1920个CPU和280个GPU的高性能计算资源,在一场比赛中消耗的能量是人的300倍。如此巨大的数据存储和计算量,是以前的技术所无法实现的。
无人驾驶
如果没有大数据,世界将会变成什么样呢?让我们在不久前特斯拉无人驾驶汽车车祸中寻找答案。大数据的方法是采用“足够多的数据+简单的模型”来得到更好的结果。因此,想要提高性能,就必然依赖于大数据。数据越多,覆盖量、精密度越高,对模型的依赖就越低,人工智能就变得足够可靠。
“大数据+云”助推ICT腾飞
2015年,我们见证了云计算如何推动消费产品和企业级产品领域的伟大创新,成为不同规模企业的部署对象。如今,云计算已成为推动诸多企业创新的引擎。小米正通过云计算服务全球范围的智能手机用户;猎豹移动通过云计算为全球的用户提供手机安全的保障;WPS通过云为全球的办公用户提供文件的存储和分享。金山云作为国内顶级的云服务商,提供大规模存储和计算平台,支撑大数据挖掘和机器学习的复杂而耗费资源的算法与处理,成为诸多企业创新的引擎。金山视频云平台被视为全球最专注的公有视频云,金山游戏云平台成为国内最大的游戏云平台,已形成完善的游戏产业生态。金山云更多的垂直领域云平台,如医疗云、政务云平台正在成为智慧城市的核心和基础。与此同时,金山云在美国和香港设立了数据中心,以满足美国和东南亚客户的需要。
大数据和云计算将极大地推进我国信息产业发展。当前,人工智能时代正在来临,对于存储和计算能力将产生更大需求。最近五年,人工智能在数据本身已经有了很大的突破。当拥有了海量数据并在算法上有所突破之后,人工智能水平将进一步突破。未来,人们将在人工智能上持续挖掘需求和应用,这需要数据存储和计算能力的支撑。
人工智能已成为信息技术产业的主流与传统行业升级、转型和变革的关键。而算法、大数据、计算资源不仅构成了人工智能的坚实支点,还将成为现实中构建通往全新“智能”之路的能量之源。人工智能飞速发展,大数据和云共存共生、相互促进,一种不一样的思考方式正在成长成熟。大数据和云正在推动人工智能时代的来临,同时拥有大数据和云计算技术储备的企业将在智能时代发挥更大作用,助力ICT产业腾飞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27