京公网安备 11010802034615号
经营许可证编号:京B2-20210330
拷问支付宝大BOSS:关于卖家数据分析的10个问题
1,作为支付宝数据首席分析师,你怎么看待“数据挖掘”这个词?
所谓的“数据挖掘”是基于用户的行为挖掘出有价值的东西,以及这个东西被用到商业环境上。比如非常著名的“啤酒与尿布”的案例,它的背景是在1992年的美国,每周四或者每周五下午5点-7点的时间形成的连锁销售。但是这个联合销售的方法并不适合任何时间和任何场合,单纯地剥离其背景本身,谈数据挖掘就是一个很泛的事情。
2,你认为,支付宝的数据和淘宝的数据有什么不一样?
我不在淘宝工作,所以很难全面地去了解淘宝内的数据。简单来说,支付宝的数据很广,它是以结果为导向的,显示的是买家交易最后一步动作,而淘宝探讨的是影响其购买的多项数据,是过程数据,它的数据更深,更细分。
3,作为产品出身的数据分析师,按道理你应该对影响消费者购买以及过程数据更感兴趣,为什么会选择支付宝这种以结果为导向的交易数据分析呢?
支付宝也有其特殊的优势。从我个人而言,选择一个公司做数据分析有几个理由,第一,公司高层对数据的理解和重视程度;第二,公司的数据量足够大,足够丰富,能和你本身的研究方向相契合;第三,公司文化与就是个人性格的匹配,这三点支付宝都符合。
4,你个人认为数据能帮助卖家解决什么问题?
其实数据的核心就是将复杂问题简单化。今天的数据是否成功主要看两方面:第一是从时间(Righttime)上,数据出现的时间能否在你最需要它的时候出现;第二,从技术层面讲,有关数据的技术门槛能不能再降低。如果你能让你的用户用2秒时间,只要按一个箭头就可看到他想看的数据,那么这些数据就更有价值的。
5,作为产品出身的人,你看数据的角度会和单纯的数据分析师有什么不一样么?
从我本身而言,我认为不懂商业的人别谈数据。因为做任何数据都应该从问题出发。比如,你在用数据解决问题之前,首先要问自己几个问题:what is the problem(是什么问题?);who(用户是谁);why me(为什么是我做?);why now(为什么是现在做?);What scale(用户层大么?)。这几个问题,如果都是YES,那么这个产品就一定值得做。
6,如果你是支付宝的CEO,你最关心支付宝的哪些数据?
这就要看你所指的时间性了,比如周度,月度,甚至年度是不一样的。如果你的问题是指周度(week)敏感的话而我的时间只有十分钟的话我的答案会是:第一,新/老用户支付成功率;第二,新增用户数的周环比及最近峰比较;第三,十大业务量最高的支付场景中那一个超出了我的预期。第四,商户及用户上周投诉的分类排行榜。
7,现在很多卖家开口闭口就会必谈pv.uv和转化率,你认为这是卖家最应该关心的数据吗?
我不是卖家,但是这个问题的答案是:显然不是。数据是需要背景的,并不是任何类目,任何级别的卖家他关心的都应该是所谓的流量和转化率等。比如京东前一段时间最关注的是物流是否给力,因此京东的CEO最想要看的就是送达率的情况,而如果老板关注的是新品成功率,又或者是追单率等数据,这些数据都不是空想,而是经过沉淀和契合卖家自身发展背景的。因此,肯定不是所有的卖家在任何阶段关心的数据都是一样。
8,你觉得作为淘宝卖家,应该如何使用数据?
卖家更应该学会关注搜索数据(Buyer demanddata),而不是交易数据,比如作为一个女装卖家,你输入“新款”,会发现,其实早在3月11日,就应该是春装打折的时候,如果你对搜索数据敏感,就更容易发现商机,而不是只盯着所谓的交易数据不放。要注意的是其实百分之九十影响你的数据不一定在站内。
9,如果你是淘宝卖家,你会关注哪些数据?
如果我是卖家,我关心的数据有两个纬度:第一,新用户从那个渠道找到我,看了什么? 买了什么。;第二,存量用户中的留存情况。
10,你觉得,一个公司或者一个卖家,如何合理利用数据来制定KPI呢?
很多公司的KPI大多是以业务目标为导向,很少以用户为导向。其实更好的KPI导向应该是以用户为核心。我们常说用户很重要,但是用户到底有多重要,那些用户对你更重要,可以量化吗?。其实要知道用户对你的感知只要问一个问题就可以,用户失去你,他会不会不爽?比如失去了QQ密码,用户会慌,没有了支付宝,对用户影响大么?从这个角度去分析,自然能找到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13