京公网安备 11010802034615号
经营许可证编号:京B2-20210330
拷问支付宝大BOSS:关于卖家数据分析的10个问题
1,作为支付宝数据首席分析师,你怎么看待“数据挖掘”这个词?
所谓的“数据挖掘”是基于用户的行为挖掘出有价值的东西,以及这个东西被用到商业环境上。比如非常著名的“啤酒与尿布”的案例,它的背景是在1992年的美国,每周四或者每周五下午5点-7点的时间形成的连锁销售。但是这个联合销售的方法并不适合任何时间和任何场合,单纯地剥离其背景本身,谈数据挖掘就是一个很泛的事情。
2,你认为,支付宝的数据和淘宝的数据有什么不一样?
我不在淘宝工作,所以很难全面地去了解淘宝内的数据。简单来说,支付宝的数据很广,它是以结果为导向的,显示的是买家交易最后一步动作,而淘宝探讨的是影响其购买的多项数据,是过程数据,它的数据更深,更细分。
3,作为产品出身的数据分析师,按道理你应该对影响消费者购买以及过程数据更感兴趣,为什么会选择支付宝这种以结果为导向的交易数据分析呢?
支付宝也有其特殊的优势。从我个人而言,选择一个公司做数据分析有几个理由,第一,公司高层对数据的理解和重视程度;第二,公司的数据量足够大,足够丰富,能和你本身的研究方向相契合;第三,公司文化与就是个人性格的匹配,这三点支付宝都符合。
4,你个人认为数据能帮助卖家解决什么问题?
其实数据的核心就是将复杂问题简单化。今天的数据是否成功主要看两方面:第一是从时间(Righttime)上,数据出现的时间能否在你最需要它的时候出现;第二,从技术层面讲,有关数据的技术门槛能不能再降低。如果你能让你的用户用2秒时间,只要按一个箭头就可看到他想看的数据,那么这些数据就更有价值的。
5,作为产品出身的人,你看数据的角度会和单纯的数据分析师有什么不一样么?
从我本身而言,我认为不懂商业的人别谈数据。因为做任何数据都应该从问题出发。比如,你在用数据解决问题之前,首先要问自己几个问题:what is the problem(是什么问题?);who(用户是谁);why me(为什么是我做?);why now(为什么是现在做?);What scale(用户层大么?)。这几个问题,如果都是YES,那么这个产品就一定值得做。
6,如果你是支付宝的CEO,你最关心支付宝的哪些数据?
这就要看你所指的时间性了,比如周度,月度,甚至年度是不一样的。如果你的问题是指周度(week)敏感的话而我的时间只有十分钟的话我的答案会是:第一,新/老用户支付成功率;第二,新增用户数的周环比及最近峰比较;第三,十大业务量最高的支付场景中那一个超出了我的预期。第四,商户及用户上周投诉的分类排行榜。
7,现在很多卖家开口闭口就会必谈pv.uv和转化率,你认为这是卖家最应该关心的数据吗?
我不是卖家,但是这个问题的答案是:显然不是。数据是需要背景的,并不是任何类目,任何级别的卖家他关心的都应该是所谓的流量和转化率等。比如京东前一段时间最关注的是物流是否给力,因此京东的CEO最想要看的就是送达率的情况,而如果老板关注的是新品成功率,又或者是追单率等数据,这些数据都不是空想,而是经过沉淀和契合卖家自身发展背景的。因此,肯定不是所有的卖家在任何阶段关心的数据都是一样。
8,你觉得作为淘宝卖家,应该如何使用数据?
卖家更应该学会关注搜索数据(Buyer demanddata),而不是交易数据,比如作为一个女装卖家,你输入“新款”,会发现,其实早在3月11日,就应该是春装打折的时候,如果你对搜索数据敏感,就更容易发现商机,而不是只盯着所谓的交易数据不放。要注意的是其实百分之九十影响你的数据不一定在站内。
9,如果你是淘宝卖家,你会关注哪些数据?
如果我是卖家,我关心的数据有两个纬度:第一,新用户从那个渠道找到我,看了什么? 买了什么。;第二,存量用户中的留存情况。
10,你觉得,一个公司或者一个卖家,如何合理利用数据来制定KPI呢?
很多公司的KPI大多是以业务目标为导向,很少以用户为导向。其实更好的KPI导向应该是以用户为核心。我们常说用户很重要,但是用户到底有多重要,那些用户对你更重要,可以量化吗?。其实要知道用户对你的感知只要问一个问题就可以,用户失去你,他会不会不爽?比如失去了QQ密码,用户会慌,没有了支付宝,对用户影响大么?从这个角度去分析,自然能找到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31