
SPSS Syntax中的常用函数
SPSS函数是一个常用程序(rountine),并且利用一个或多个自变量(参数)来执行。每个SPSS函数均有一个关键名称(keywordname),且绝不能写错。通常,函数的格式为:函数名称(自变量,自变量,……),某些函数可能只含有一个自变量,而有些函数则可能含有多个自变量,当一个函数含有多个自变量时,各自变量间用逗号(,)隔开,而函数的自变量通常又可分为以下三种:1)常数,如SQRT(100):2)变量名称,如MEAN(VAR1,VAR2,VAR3);3)表达式,如MIN(30,SQRT(100))。总之,SPSS函数和我们平时EXCEL里面函数格式规则并无差别。
SPSS提供了180多种函数,共可分为十多类(SPSS 17.0中大大小小分了18类)。和EXCEL一样,我们也不可能记住所有函数,只要知道一些常用函数,至于其他函数要用的时候再去查找也不迟,下面本人将列举一些常用函数:
(一)算术函数
函数 |
说明 |
范例(x=2.6,y=3) |
ABS(numbexpr) |
绝对值函数 |
ABS(y-x)=0.4 |
RND(numbexpr) |
四舍五入函数 |
RND(x)=3 |
TRUNC(numbexpr) |
取整函数 |
TRUNC(x)=2 |
SORT(numbexpr) |
平方根函数 |
SQRT(y)=1.71 |
MOD(numbexpr,modulus) |
求算两数相除后的余数 |
MOD(y,x)=0.4 |
EXP(numbexpr) |
以e为底的指数函数 |
EXP(y)=20.09 |
LG10(numbexpr) |
以10底的对数函数 |
LG10(x*10)=1.41 |
LN(numbexpr) |
自然对数函数 |
LN(y)=1.1 |
(二)统计函数
函数 |
说明 |
范例(X1=2,X2=5,X3=8) |
MEAN(numexpr,numexpr,…) |
自变量的平均值 |
MEAN(X1,X2,X3)=5 |
MIN(value, value,…) |
自变量的最小值 |
MIN(X1,X2,X3)=1 |
MAX(value, value,…) |
自变量的最大值 |
MAX(X1,X2,X3)=8 |
SUM(numexpr,numexpr,…) |
求和 |
SUM(X1,X2,X3)=15 |
SD(numexpr,numexpr,…) |
求标准差 |
SD(X1,X2,X3)=3 |
VARIANCE(numexpr,numexpr,…) |
求方差 |
VAR(X1,X2,X3)=9 |
CFVAR(numexpr,numexpr,…) |
求变异系数 |
CFVAR(X1,X2,X3)=0.6 |
(三) 缺失值函数
函数 |
说明 |
范例 |
MISSING(variable) |
若变量缺失,则为T或1,否则为F或0 |
MISSING(X1)=1 MISSING(X2)=1 MISSING(X3)=0 |
SYSMIS(numvar) |
若变量是系统缺失值则为T或1,如为自定缺失或非缺失则为F或0 |
SYSMIS(X1)=0 SYSMIS(X2)=1 SYSMIS(X3)=0 |
NMISS(variable,…) |
缺失值个数 |
NMISS(X1,X2,X3)=2 |
NVALID(variable,…) |
有效值个数 |
NVALID(X1,X2,X3)=1 |
VALUE(variable,…) |
忽略自定义缺失值,当作非缺失 |
VALUE(X1)=X1 |
注:X1为使用者界定缺失值,X2为系统缺失值,X3为非缺失值
(四)字符串型函数
函数 |
说明 |
范例 |
ANY(test,value,value) |
若自变量1和后面自变量窜相同则为真,记为1 |
ANY(is, this)=0 ANY(is,this,is)=1 |
CONCAT(strexpr,strexpr) |
将自变量连成一个新自变量 |
CONCAT(th,is)=this |
INDEX(haystack,needle,divisor) |
Divisor在needle最左侧开始出现的位置 |
INDEX(‘this is’,’is’)=3 |
LENGTH(strexpr) |
自变量所含文字的个数(包括特殊字符和空格) |
LENGTH(‘th is’)=5 |
LOWER(strexpr) |
自变量中的大写字母改为小写字母 |
LOWER(‘This’)=’this’ |
UPCASE(strexpr) |
将自变量中的小写字母改为大写字母 |
UPCASE(‘this’)=’THIS’ |
LTRIM(strexpr,char) |
在strexpr开始处去除char所形成的常量,如无char则去除strexpr左侧的空格 |
LTRIM(‘this’,’t’)=’his’ LTRIM(‘this’,’is’)=’th’ LTRIM(‘ this’)=’this’ |
NUMBER (strexpr,format) |
当自变量为数字的文字变量时,按文字变量指定格式转换为数字变量 |
NUMBER(‘23’,F8.1)=2.3 NUMBER(‘23’,F8.0)=23 |
RANGE(test,lo,hi,lo,hi) |
如果自变量1的值包含在自变量集lo至hi的范围内,则为T或1 |
RANGE(‘c’,’a’,’k’)=T |
STRING(strexpr,format) |
按指定格式将自变量转换为文字型变量 |
STRING(3+4,F8.2)=’7.00’ |
SUBSTR(sterxpr,pos,length) |
从strexpr子窜的第pos位置开始取length的字符串长度 |
SUBSTR(‘this is’,6,2)=’is’ |
(五)时间日期函数
函数 |
说明 |
范例 |
DATA.DMY(d,m,y) |
与指定日月年对应的日期 |
DATA.DMY(3,5,99)=05/03/99 |
DATA.MDY(m,d,y) |
与指定月日年对应的日期 |
DATA.MDY(5,3,99)=05/03/99 |
DATA.YRDA(y,d) |
与指定年日对应的日期 |
DATA.YRDA(99,35)=02/04/99 |
DATA.QYR(q,y) |
指定的季节年份对应的日期 |
DATA.QYR(2,99)=04/01/99 |
DATA.MOYR(m,y) |
与指定的月年度对应的日期 |
DATA.MOYR(5,99)=05/01/99 |
DATA.WKYR(w,y) |
与指定的周年度对应的日期 |
DATA.WKYR(38,98)=9/17/98 |
注:1 要正确显示以上函数值,必须先赋予其SPSS得日期型变量(DATA)格式,假设以上日期用mm/dd/yy格式显示,时间则用hh:mm:ss格式表示
2 1<=d<=31、1<=m<=12、1<=w<=52、1<=q<=4
(六)其他函数
SPSS除了上述函数外,尚有日期和时间转换函数(YOMODA\CTMIESDAYS\CTIMEHOURS\MDAYS等)、连续几率密度函数(CDF\BINOM\CHISQ\CDF\EXP\LOGISTIC等),此外还有NORMAL(stddev)可产生平均数为0,标准差为stddev的正态分布随机数字。UNIFORM(max)可产生平均数为0与max间呈均等分布的随机数字。
PS:还可以像EXCEL一样利用脚本编写自定义函数,目前SPSS支持python,Sax Basic(一种与VB兼容的编程语言)等语言,利用new--script可编写出自己需要的函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01