京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建立一个SPSS数据文件
SPSS所处理的数据文件有两种来源:一是SPSS环境下建立的数据文件;二是调用其它软件建立的数据文件。 1 在SPSS数据编辑窗口建立数据文件
当用户启动SPSS后,系统首先显示一个提示窗口,询问用户要SPSS做什么时,把鼠标移至“Type in data”项上单击左键选中,然后单击“OK”按钮;或者该窗口中单击“Cancel”按钮进入SPSS数据编辑窗屏幕,如图所示。
图 进入SPSS数据编辑器
(1) 数据编辑(SPSS Data Editor)界面介绍
窗口名显示栏: 在窗口的顶部,显示窗口名称和编辑的数据文件名,没有文件名时显示为“Untitled-SPPS Data Editor”。
窗口控制按钮:在窗口的顶部的右上角,第一个按钮是窗口最小化,第二个按钮是窗口最大化,第三个按钮是关闭窗口。
SPSS主菜单:在窗口显示的第二行上,有:File文档,Edit编辑,View显视,Data数据,Transform转换,Analyze分析,Graphs图形,Utilities公用项,Windows视窗。

图 SPSS窗口界面
常用工具按钮:在窗口显示的第三行上,有:打开文档,保存文档,打印,对话检索,取消当前操作,重做操作,转到图形窗口,指向记录,指定变量操作,查找,在当前记录的上方插入新的空白记录,在当前变量的左边插入新的空白变量,切分文件,设置权重单元,标记单元,显示价值标签。
数据单元格信息显示栏:在编辑显示区的上方,左边显示单元格和变量名(单元格:变量名),右边显示单元里的内容。
编辑显示区: 在窗口的中部,最左边列显示单元序列号,最上边一行显示变量名称,缺省为“Var”。
编辑区选择栏: 在编辑显示区下方,Data View 在编辑显示区中显示编辑数据,Variable View在编辑显示区中显示编辑数据变量信息。
状态显示栏: 在窗口的底部,左边显示执行的系统命令,右边显示窗口状态。
(2) 数据文件格式
数据文件格式以每一行为一个记录,或称观察单位(Cases),每一列为一个变量(Variable)。由于SPSS不同的统计分析过程需要不同的数据类型,因此,在学习使用SPSS软件作统计分析时要注意这个问题。
现在,我们通过一个例子来学习数据的输入操作。
例: 马尾松腮扁叶蜂在林间表土层的水平分布调查数据
|
调查地点 |
样方里的幼虫数量 |
|
样地1 |
1 4 0 2 6 3 2 3 0 0 6 4 2 8 7 0 3 4 2 5 5 3 2 4 4 5 9 2 0 5 1 3 4 0 0 1 8 7 3 3 2 2 8 4 7 |
|
样地2 |
3 1 1 0 0 0 4 1 4 1 5 2 0 5 2 3 0 0 3 5 4 3 5 11 0 0 3 5 1 1 3 4 2 4 0 3 1 4 4 4 9 5 6 1 6 |
|
样地3 |
3 5 3 0 4 0 2 3 1 4 3 7 6 3 4 2 0 4 4 2 3 2 8 3 6 3 1 4 1 4 3 3 2 5 5 3 10 2 5 2 5 4 5 1 4 |
(3) 定义变量
建立数据文件的第一步是定义变量。在数据编辑窗口左下角激活(Variable View)变量定义窗口,如下图
在数据窗口中,用户定义数据变量的名称、数据类型、宽度、小数位和标记等信息。
变量名称
输入字符(汉字和英文)作为变量的名称,本例为,样地1,样地2,样地3。如不输入名称,系统依次默认为“var00001”、“var00002”、“var00003” …。
变量应遵循下列原则:
在SPSS10.0中限制为8个字符长度(4个汉字);在SPSS12.0中没有限制。
首字符必须是字母或汉字,不能以下划线“_”或圆点“,”结尾。
变量不能有空格或某些特殊符号,如“!?*”等。
变量名不能与SPSS的关键字相同,即不能用ALL、AND、BY、EQ、GT、LE等。
变量的数据类型
当鼠标指针移至单元格,单击后该单元格的右边就会显示一个“…”按钮,单击该按钮就会显示一个数据类型设置窗口,如下图所示。
可供选择的数据类型有:
Numeric 标准数值型,系统默认。例如: 12345.67
Comma 逗号数值型。例如: 12,345.67 千分位用逗号
Dot 圆点数值型。例如: 12.345,67 千分位用圆点
Scientific notal 科学记数法。 例如: 1.2E+04
Dat 日期型,有27种形式。 例如: mm/dd/yyyy
Dollar 美元型。 例如:$12345.67
Custom currency 自定义型。 例如:12345.67
String 字符型。 例如:12345.67
width 指定数据字符占据的总个数(包括小数点和小数位)。
Decimal 指定小数位。
根据本例的要求,变量定义如图所示。
变量标签(Label):有的时候变量名不能正确反映变量含义,有必要给它贴上标签以便识别。这个时候,就在变量定义的标签栏里输入你的注释。
变量值标签(Values):变量值标签是用来帮助解释某些变量,特别是分类变量的数值含义。例如,有一个数值变量,0表示女性,1表示男性。此时,为了便于识别这些数值,我们是用变量值标签。
在下图的第一个Value栏输入数值,在第二个Value栏输入数值标签。当两个输入栏输入内容后,Add按钮激活,点击它就定义了变量值标签。如本例,定义了0=女 和1=男 。需要修改和删除,使用Change和Remove按钮。
缺失值(Missing): 缺失值是统计分析时,对数据中缺少数据的一种统计识别值。缺失值定义窗口如下图。
No missing values 没有定义缺失值,用系统默认值圆点“.”表示。
Discrete missing values 可以定义3个缺失值,例如,第一格输入“0”,表示凡为0的数据是缺失值。
Range plus one optional discrete missing value 定义取值区间为缺失值。例如,Low:为1,High:为5,Discrete value:为10,表示1至5之间的数据及数值10视为缺失值。
数据列的显示宽度(Columns): 显示数据的列宽,默认8个字符。
对齐方式(Align): 有左中右3种数据显示方式。
度量类型(Measure): 按度量精度将变量分为定量变量(Scale)、等级变量(Orsinal)和定性变量(Nominal)。该选项仅用于统计绘图时坐标轴变量的区分以及决策树模块的变量定义。定量变量,如虫口数、死亡率等;等级变量,如防治效果的好、不好等;定性变量,如害虫抗药性发生,低抗,中抗和高抗。
(4) 输入数据
变量定义完成后,在编辑区选择栏里单击“Data View”卡片,编辑显示区显示为数据编辑。在编辑区中,把与变量名相对应的数据输入到单元格里区,如下图所示。
数据输入后的数据编辑窗口
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17