
大数据时代,数据科学家的一天是如何分配的
不言而喻,数据科学家的大部分时间都在和数据打交道。不过,面对面的交流、开会也是一个相当重要的组成部分,这一点可能不太容易想到。
数据科学家Tanu George表示,一天通常以会议开始,这些会议可能有着不尽相同的目的,比如确定客户的业务问题,跟踪进展或讨论报告。会议结束后,要开始进行数据处理,主要集中解决会议中提到的问题。下午继续开会,展示数据处理结果,在一天快结束的时候,需要通过电子邮件共享分析结果。
George每天大约50%的时间在开会中度过,20%用于工作,20%用于解释数据处理结果,包括可视化以及将数据转化为可操作的形式。Ryan Rosario也是一名数据科学家,同时是线上教育网站Springboard的老师,对他来说,和客户开会也是一个非常重要的组成部分。很多时候,他都在考虑客户需要哪种类型的数据。大部分情况下,客户是没有数据的也不知道通过哪种途径得到数据,而他需要根据客户的需求制定计划,从而得到数据。
大部分数据科学家并不是与单个数据打交道,而是试图了解对客户或公司来说,数据意味着什么。人们很喜欢通过分析数据来做决策,但有时并没有合适的数据。作为数据科学家,需要学会筛选合适的数据,运用恰当的数据分析方法,帮助客户做出正确的决策。
工作中最喜欢的部分
George表示,会议是她一天中最喜爱的部分。作为Facebook机器学习的工程师,Rosario认为数据往往是混乱的,或者只有某个特定软件可以理解。作为数据科学家,需要把数据转换成方便理解的格式,他很喜欢向人们展示数据可以做什么。许多人都知道他们需要数据,但他们不知道具体需求是什么,而数据科学家需要像魔术师一样,打开客户的思维可能性。另一位数据科学家Long喜欢很多部分,包括研究问题背景的初始阶段以及找出获取数据的方法。
如何成为数据科学家?
要想成为数据科学家需要做很多方面的努力,现在几乎所有公司的数据都会开放API,而Python的数据处理能力强大且方便,如果你想成为数据科学家(数据分析培训),可以考虑从Python入手。此外,统计学习、数据处理、统计学和计算机科学可能都会涉及。有人可以通过读书很好的学习,但最好的学习方法还是将知识付诸实践。
下一站应该做什么?
随着物联网的发展,George认为未来一定会有更多的数据出现。越关注主流数据就意味着有越多的工作要做。Rosario认为,物联网和流媒体数据将是下一个前沿,数据安全是急需解决的重大问题。数据科学家往往希望成为“独角兽”,这意味着他们想要尽一己之力,解决所有的编码、数据操作、数据分析等工作。术业有专攻,很难有人可以掌握所有东西,但不同的人可以掌握不同的技术。
有哪些建议?
想要做数据科学,Rosario认为至少得是硕士学位。对于遇到的问题,应该试图找到方法并解决它,可以试着从类似于Kaggle的网站寻找数据集,并找出解决方案。
大数据时代,是不是每家公司都需要数据科学家呢?这当然因公司而异,由于目前的软件技术和算法变得越来越先进,无需人力成本的投入就可以完成数据组织和运营。这些高科技手段对企业而言是利好消息,因为企业可以减少做数据科学方面的成本,但数据科学家的就业前景还是不错的,数据科学家也应为企业解决难题,为企业带来价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14