京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,数据科学家的一天是如何分配的
不言而喻,数据科学家的大部分时间都在和数据打交道。不过,面对面的交流、开会也是一个相当重要的组成部分,这一点可能不太容易想到。
数据科学家Tanu George表示,一天通常以会议开始,这些会议可能有着不尽相同的目的,比如确定客户的业务问题,跟踪进展或讨论报告。会议结束后,要开始进行数据处理,主要集中解决会议中提到的问题。下午继续开会,展示数据处理结果,在一天快结束的时候,需要通过电子邮件共享分析结果。
George每天大约50%的时间在开会中度过,20%用于工作,20%用于解释数据处理结果,包括可视化以及将数据转化为可操作的形式。Ryan Rosario也是一名数据科学家,同时是线上教育网站Springboard的老师,对他来说,和客户开会也是一个非常重要的组成部分。很多时候,他都在考虑客户需要哪种类型的数据。大部分情况下,客户是没有数据的也不知道通过哪种途径得到数据,而他需要根据客户的需求制定计划,从而得到数据。
大部分数据科学家并不是与单个数据打交道,而是试图了解对客户或公司来说,数据意味着什么。人们很喜欢通过分析数据来做决策,但有时并没有合适的数据。作为数据科学家,需要学会筛选合适的数据,运用恰当的数据分析方法,帮助客户做出正确的决策。
工作中最喜欢的部分
George表示,会议是她一天中最喜爱的部分。作为Facebook机器学习的工程师,Rosario认为数据往往是混乱的,或者只有某个特定软件可以理解。作为数据科学家,需要把数据转换成方便理解的格式,他很喜欢向人们展示数据可以做什么。许多人都知道他们需要数据,但他们不知道具体需求是什么,而数据科学家需要像魔术师一样,打开客户的思维可能性。另一位数据科学家Long喜欢很多部分,包括研究问题背景的初始阶段以及找出获取数据的方法。
如何成为数据科学家?
要想成为数据科学家需要做很多方面的努力,现在几乎所有公司的数据都会开放API,而Python的数据处理能力强大且方便,如果你想成为数据科学家(数据分析培训),可以考虑从Python入手。此外,统计学习、数据处理、统计学和计算机科学可能都会涉及。有人可以通过读书很好的学习,但最好的学习方法还是将知识付诸实践。
下一站应该做什么?
随着物联网的发展,George认为未来一定会有更多的数据出现。越关注主流数据就意味着有越多的工作要做。Rosario认为,物联网和流媒体数据将是下一个前沿,数据安全是急需解决的重大问题。数据科学家往往希望成为“独角兽”,这意味着他们想要尽一己之力,解决所有的编码、数据操作、数据分析等工作。术业有专攻,很难有人可以掌握所有东西,但不同的人可以掌握不同的技术。
有哪些建议?
想要做数据科学,Rosario认为至少得是硕士学位。对于遇到的问题,应该试图找到方法并解决它,可以试着从类似于Kaggle的网站寻找数据集,并找出解决方案。
大数据时代,是不是每家公司都需要数据科学家呢?这当然因公司而异,由于目前的软件技术和算法变得越来越先进,无需人力成本的投入就可以完成数据组织和运营。这些高科技手段对企业而言是利好消息,因为企业可以减少做数据科学方面的成本,但数据科学家的就业前景还是不错的,数据科学家也应为企业解决难题,为企业带来价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11