京公网安备 11010802034615号
经营许可证编号:京B2-20210330
专访|8年数据分析路之经验谈
Q1:可以谈谈您目前的工作内容及各部分占据的时间吗?
王婷: 我目前是在钢铁行业公司做数据分析,专注在钢铁行业挖掘大数据价值,使得钢铁行业生态圈上下游产生更多的机会、解决更多的问题。
目前工作主要是需求分析、数据产品设计、挖掘模型设计。需求分析和数据产品设计占据工作时间比较大,主要是了解业务侧的需求,挖掘用户需求设计产品,占据80%,模型设计占据20%,主要因为目前公司处于数据沉淀、积累阶段,后续应该会有所变化。
Q2:对创业公司来说,数据对于公司的价值体现在哪些方面?
王婷: 对于数据的价值来说,是一个普遍和广泛的问题,大部分公司都会经历这么几个阶段:
一是,满足基本需求,比如基础查询需求;
二是,对公司业务在数据层面的总结,如月报;
三是,数据化运营,如通过数据分析帮助网站运营的同事衡量2个风格的网页用户更喜欢哪种。
四是,通过数据帮助公司寻找到未来的商业机会并且帮助决策层制定更正确的方向。
Q3:数据的作用通过何种途径得到挖掘和发挥?
王婷: 对于数据作用的发挥,个人认为首先是从上到下的过程,需要公司领导层的认可;其次是要有强大的数据分析团队,团队要对数据有兴趣且乐于分析挖掘问题;最后是业务部门的配合。
Q4:能否举例说明大数据的应用,包括它的方向、流程和落地效果?
王婷: 以精准化营销来说明数据如何在营销中发挥价值的案例以及经历了哪几个阶段。
一是,在营销邮件中插入用户的姓名、积分、预留的信息,用于区别垃圾邮件,以提升用户体验的目的;
二是,在电商网站上嵌入了推荐系统,主要发现用户的需求和兴趣;
三是,在邮件中嵌入推荐系统,根据用户的浏览行为和购买行为推送用户可能感兴趣的商品,这个对营销ROI提升较大;
四是,引入了用户站外数据,如用户在其他网站的偏好数据,那么在用户进入到站内时就可以推荐以往浏览或感兴趣的商品。大概是经历了这些阶段。
Q5:能谈谈您对于大数据的看法吗?
王婷: 大数据这个话题比较火热,在去年的时候大数据已经上升的国家战略层面,我说下自己的想法:
一是,态度上要关注要学习;
二是,不能盲从,不盲目使用大数据技术,一家公司在组建大数据团队的时候,是要综合业务需求和成本支出再做决策的;
三是,大数据不可能解决一切问题,不能过度崇拜数据,否则容易让人陷入狭隘,不够客观。
Q6:您觉得分析师如何培养数据的敏感性?
王婷: 我觉得可以从这几个方面来看:
一是,天生的;
二是,日积月累的对数据形成的反射,像分析师每天都要看所属业务范围的数据,比如业务指标是否有问题,因何产生,时间长了自然而然就能形成条件反射;
三是,多总结,这能帮助自己更深层的思考。
Q7:对于那些即将从事或者想从事的数据分析工作的同学,您有什么建议吗?
王婷: 我建议有这几点:
一是,建议要想清楚自己对这个职业是否感兴趣,因为这个职业需要一直保持学习状态,学习技术、学习业务,非常辛苦;
二是,在从事之前,准备工作要做充分,比如软件工具、统计原理等;
三是,在与业务沟通时,要多问问题,多问之后才知道业务遇到的根本问题,因为业务通常提的可能是表象问题,需要不断挖掘才能知道深层次需求,这样才能有最有效率的办法去解决;
四是,要勇于面临挑战,因为我们通常面临的是业务专家或领导,即使是这样,也要保持自信,给出基于数据分析得出的结论和建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31