京公网安备 11010802034615号
经营许可证编号:京B2-20210330
光用大数据锁定消费者没用,要为他们创造价值
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
大数据给营销带来了非常大的希冀。特别是,它能解决营销人员一直觉得棘手的两个问题:
1. 谁在什么时候以什么价格买了啥?
2. 客户所听、所读和所看到的东西究竟与他们消费购买有无关联?
解决它们就能更容易地锁定目标客户,发现并消除所谓被“浪费了的50%”的广告预算,从而使营销变得更高效。因此,为了解决这两个问题,营销官们把自己的 大数据 望远镜对准这样一个目标:预测消费者的下一笔交易。他们努力地画出每位消费者更为详细的用户画像、记住他的媒体偏好、仔细观察他的购物习惯、并将他的喜好愿望和想要的都进行归类。其结果就是给出了一个精致、高分辨率的用户特写,揭示他的下一步举动。
然而,急着探索和瞄准下次交易令许多行业很快面临一种令人担忧的现实:赢得了下一笔交易最终也只是短期的策略优势。它忽视了一个巨大且必然的结果,那就是如果每个竞争者都能掌握了预测客户下一笔交易的能力,营销官们也会不可避免地牺牲掉边际交易的利润。这种没有赢家的短期军备竞赛最终会导致在中长期让所有竞争对手地位均等。追求下一笔交易将不会带来持续性的竞争优势。
这并不意味着企业不应尝试去预测和捕抓消费者下一次的购买意图。而是他们要知道,只有在竞争对手普遍落后,成为领先者还依旧有点儿优势的行业里,这种做法才能取得高于平均水平的回报。在旅游、保险、电信、音乐和汽车这些行业里,各竞争对手之间的预测水平已迅速趋于平衡, 能从预测下一次购买中获得的可持续竞争优势已非常少。
营销方案若想依靠大数据获得持续性优势,就必须问一些有关长期客户粘度、忠诚度以及客户关系的战略性问题。基于大数据提出的问题,不仅要关注什么能诱发下一次购买,也要问问哪些因素能让客户保持忠诚;不仅看客户下次愿意付多少价钱,也要问问他们能提供的终身价值是多少;不仅看怎么从对手那里挖来客户,也要问问在对手有更优惠的价格时,怎么才能让他们留下来。
要想知道这些更具战略性问题的答案,就得以不同的方式运用大数据。与其只看如何用数据锁定客户,我们更应该关注如何用大数据给客户创造价值。也就是说,我们需要做个转化,不问大数据能为我们做些什么,而是关注大数据能为客户做什么。
大数据能帮助提供设计资料,增强产品与服务,或完全打造一个全新的出来。简单例子有像亚马逊和Netfilx,通过推荐引擎减少搜索和评估成本,给客户创造价值;或者是像Opower利用定制化的使用信息增强商品的实用性。更有趣的例子是一些来自众包的数据,可以回答消费者诸如“我能从其它消费者学到什么”或“我跟其它消费者相比起来如何”等重要问题。
多参考一些利用大数据创造新价值的初创公司能给我们带来不少启发。Opower允许客户给他们的Facebook好友分享自己的水电账单,了解自己与其它用户相比起来排名情况如何。 INRIX则是集合客户手机和其它来源的交通数据,提供实时的路况报告。房地产网站Zillow结合各方信息给买家、卖家和中介提供关于地产特性与价值,性价比高的房地产以及市场特征的综合洞察。这些公司都是天生大数据企业。他们的成功也为所有行业敲响了警钟:今天,所有的生意都是信息生意。
每家公司可以通过以下三个问题,来判断自己能如何利用大数据给客户创造价值:
1.哪种数据能帮助我的客户减少成本与风险?
市值数十亿的公司如Yelp、Zagat、猫途鹰、优步、eBay、Netflix和亚马逊都会处理大量数据,例如给出服务提供商和卖家的点评排名,以降低客户的风险。目前,这些关于好坏的排名已成为评判卖家的标准。但是越来越多客户希望得到关于某些问题更为详细的答案,比如与我相似的消费者对此产品或服务有什么看法。要回答这些细致的问题,就需要更深入了解客户究竟在找什么,以及他们是如何看待自己的。这将是下一代大数据价值创造的契机。
2.有哪些数据目前还很分散,但聚集起来会产生新的洞察?
有没有一些数据(如击键或地点信息)一旦集合起来会有价值?非洲一家了不起的初创公司InVenture将智能手机里的附带数据转换成为信用评价等级,让金字塔底层的客户也可以贷款或购买金融商品。在一个多数人都没有信用历史的地方,并没有信用评级存在,因此初级的手机使用数据也能用作信用评价标准。那些将自己的联络人姓和名都储存整理的人更有可能还款。
3.客户多元化与差异性要达到什么样的程度,聚合不同客户的数据才真正有用?
比如销售农用产品(种子、肥料和杀虫剂)的企业能从分散于不同地区的农民那里收集数据,从而判断适合于不同环境的最优农产品组合。无论农夫在自己那块地上耕种了多久,要想知道最佳农用产品组合,整合不同土壤、气候和环境条件的农场信息会比只看自己一家经验更有效。
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22