
光用大数据锁定消费者没用,要为他们创造价值
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
大数据给营销带来了非常大的希冀。特别是,它能解决营销人员一直觉得棘手的两个问题:
1. 谁在什么时候以什么价格买了啥?
2. 客户所听、所读和所看到的东西究竟与他们消费购买有无关联?
解决它们就能更容易地锁定目标客户,发现并消除所谓被“浪费了的50%”的广告预算,从而使营销变得更高效。因此,为了解决这两个问题,营销官们把自己的 大数据 望远镜对准这样一个目标:预测消费者的下一笔交易。他们努力地画出每位消费者更为详细的用户画像、记住他的媒体偏好、仔细观察他的购物习惯、并将他的喜好愿望和想要的都进行归类。其结果就是给出了一个精致、高分辨率的用户特写,揭示他的下一步举动。
然而,急着探索和瞄准下次交易令许多行业很快面临一种令人担忧的现实:赢得了下一笔交易最终也只是短期的策略优势。它忽视了一个巨大且必然的结果,那就是如果每个竞争者都能掌握了预测客户下一笔交易的能力,营销官们也会不可避免地牺牲掉边际交易的利润。这种没有赢家的短期军备竞赛最终会导致在中长期让所有竞争对手地位均等。追求下一笔交易将不会带来持续性的竞争优势。
这并不意味着企业不应尝试去预测和捕抓消费者下一次的购买意图。而是他们要知道,只有在竞争对手普遍落后,成为领先者还依旧有点儿优势的行业里,这种做法才能取得高于平均水平的回报。在旅游、保险、电信、音乐和汽车这些行业里,各竞争对手之间的预测水平已迅速趋于平衡, 能从预测下一次购买中获得的可持续竞争优势已非常少。
营销方案若想依靠大数据获得持续性优势,就必须问一些有关长期客户粘度、忠诚度以及客户关系的战略性问题。基于大数据提出的问题,不仅要关注什么能诱发下一次购买,也要问问哪些因素能让客户保持忠诚;不仅看客户下次愿意付多少价钱,也要问问他们能提供的终身价值是多少;不仅看怎么从对手那里挖来客户,也要问问在对手有更优惠的价格时,怎么才能让他们留下来。
要想知道这些更具战略性问题的答案,就得以不同的方式运用大数据。与其只看如何用数据锁定客户,我们更应该关注如何用大数据给客户创造价值。也就是说,我们需要做个转化,不问大数据能为我们做些什么,而是关注大数据能为客户做什么。
大数据能帮助提供设计资料,增强产品与服务,或完全打造一个全新的出来。简单例子有像亚马逊和Netfilx,通过推荐引擎减少搜索和评估成本,给客户创造价值;或者是像Opower利用定制化的使用信息增强商品的实用性。更有趣的例子是一些来自众包的数据,可以回答消费者诸如“我能从其它消费者学到什么”或“我跟其它消费者相比起来如何”等重要问题。
多参考一些利用大数据创造新价值的初创公司能给我们带来不少启发。Opower允许客户给他们的Facebook好友分享自己的水电账单,了解自己与其它用户相比起来排名情况如何。 INRIX则是集合客户手机和其它来源的交通数据,提供实时的路况报告。房地产网站Zillow结合各方信息给买家、卖家和中介提供关于地产特性与价值,性价比高的房地产以及市场特征的综合洞察。这些公司都是天生大数据企业。他们的成功也为所有行业敲响了警钟:今天,所有的生意都是信息生意。
每家公司可以通过以下三个问题,来判断自己能如何利用大数据给客户创造价值:
1.哪种数据能帮助我的客户减少成本与风险?
市值数十亿的公司如Yelp、Zagat、猫途鹰、优步、eBay、Netflix和亚马逊都会处理大量数据,例如给出服务提供商和卖家的点评排名,以降低客户的风险。目前,这些关于好坏的排名已成为评判卖家的标准。但是越来越多客户希望得到关于某些问题更为详细的答案,比如与我相似的消费者对此产品或服务有什么看法。要回答这些细致的问题,就需要更深入了解客户究竟在找什么,以及他们是如何看待自己的。这将是下一代大数据价值创造的契机。
2.有哪些数据目前还很分散,但聚集起来会产生新的洞察?
有没有一些数据(如击键或地点信息)一旦集合起来会有价值?非洲一家了不起的初创公司InVenture将智能手机里的附带数据转换成为信用评价等级,让金字塔底层的客户也可以贷款或购买金融商品。在一个多数人都没有信用历史的地方,并没有信用评级存在,因此初级的手机使用数据也能用作信用评价标准。那些将自己的联络人姓和名都储存整理的人更有可能还款。
3.客户多元化与差异性要达到什么样的程度,聚合不同客户的数据才真正有用?
比如销售农用产品(种子、肥料和杀虫剂)的企业能从分散于不同地区的农民那里收集数据,从而判断适合于不同环境的最优农产品组合。无论农夫在自己那块地上耕种了多久,要想知道最佳农用产品组合,整合不同土壤、气候和环境条件的农场信息会比只看自己一家经验更有效。
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01