
光用大数据锁定消费者没用,要为他们创造价值
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
大数据给营销带来了非常大的希冀。特别是,它能解决营销人员一直觉得棘手的两个问题:
1. 谁在什么时候以什么价格买了啥?
2. 客户所听、所读和所看到的东西究竟与他们消费购买有无关联?
解决它们就能更容易地锁定目标客户,发现并消除所谓被“浪费了的50%”的广告预算,从而使营销变得更高效。因此,为了解决这两个问题,营销官们把自己的 大数据 望远镜对准这样一个目标:预测消费者的下一笔交易。他们努力地画出每位消费者更为详细的用户画像、记住他的媒体偏好、仔细观察他的购物习惯、并将他的喜好愿望和想要的都进行归类。其结果就是给出了一个精致、高分辨率的用户特写,揭示他的下一步举动。
然而,急着探索和瞄准下次交易令许多行业很快面临一种令人担忧的现实:赢得了下一笔交易最终也只是短期的策略优势。它忽视了一个巨大且必然的结果,那就是如果每个竞争者都能掌握了预测客户下一笔交易的能力,营销官们也会不可避免地牺牲掉边际交易的利润。这种没有赢家的短期军备竞赛最终会导致在中长期让所有竞争对手地位均等。追求下一笔交易将不会带来持续性的竞争优势。
这并不意味着企业不应尝试去预测和捕抓消费者下一次的购买意图。而是他们要知道,只有在竞争对手普遍落后,成为领先者还依旧有点儿优势的行业里,这种做法才能取得高于平均水平的回报。在旅游、保险、电信、音乐和汽车这些行业里,各竞争对手之间的预测水平已迅速趋于平衡, 能从预测下一次购买中获得的可持续竞争优势已非常少。
营销方案若想依靠大数据获得持续性优势,就必须问一些有关长期客户粘度、忠诚度以及客户关系的战略性问题。基于大数据提出的问题,不仅要关注什么能诱发下一次购买,也要问问哪些因素能让客户保持忠诚;不仅看客户下次愿意付多少价钱,也要问问他们能提供的终身价值是多少;不仅看怎么从对手那里挖来客户,也要问问在对手有更优惠的价格时,怎么才能让他们留下来。
要想知道这些更具战略性问题的答案,就得以不同的方式运用大数据。与其只看如何用数据锁定客户,我们更应该关注如何用大数据给客户创造价值。也就是说,我们需要做个转化,不问大数据能为我们做些什么,而是关注大数据能为客户做什么。
大数据能帮助提供设计资料,增强产品与服务,或完全打造一个全新的出来。简单例子有像亚马逊和Netfilx,通过推荐引擎减少搜索和评估成本,给客户创造价值;或者是像Opower利用定制化的使用信息增强商品的实用性。更有趣的例子是一些来自众包的数据,可以回答消费者诸如“我能从其它消费者学到什么”或“我跟其它消费者相比起来如何”等重要问题。
多参考一些利用大数据创造新价值的初创公司能给我们带来不少启发。Opower允许客户给他们的Facebook好友分享自己的水电账单,了解自己与其它用户相比起来排名情况如何。 INRIX则是集合客户手机和其它来源的交通数据,提供实时的路况报告。房地产网站Zillow结合各方信息给买家、卖家和中介提供关于地产特性与价值,性价比高的房地产以及市场特征的综合洞察。这些公司都是天生大数据企业。他们的成功也为所有行业敲响了警钟:今天,所有的生意都是信息生意。
每家公司可以通过以下三个问题,来判断自己能如何利用大数据给客户创造价值:
1.哪种数据能帮助我的客户减少成本与风险?
市值数十亿的公司如Yelp、Zagat、猫途鹰、优步、eBay、Netflix和亚马逊都会处理大量数据,例如给出服务提供商和卖家的点评排名,以降低客户的风险。目前,这些关于好坏的排名已成为评判卖家的标准。但是越来越多客户希望得到关于某些问题更为详细的答案,比如与我相似的消费者对此产品或服务有什么看法。要回答这些细致的问题,就需要更深入了解客户究竟在找什么,以及他们是如何看待自己的。这将是下一代大数据价值创造的契机。
2.有哪些数据目前还很分散,但聚集起来会产生新的洞察?
有没有一些数据(如击键或地点信息)一旦集合起来会有价值?非洲一家了不起的初创公司InVenture将智能手机里的附带数据转换成为信用评价等级,让金字塔底层的客户也可以贷款或购买金融商品。在一个多数人都没有信用历史的地方,并没有信用评级存在,因此初级的手机使用数据也能用作信用评价标准。那些将自己的联络人姓和名都储存整理的人更有可能还款。
3.客户多元化与差异性要达到什么样的程度,聚合不同客户的数据才真正有用?
比如销售农用产品(种子、肥料和杀虫剂)的企业能从分散于不同地区的农民那里收集数据,从而判断适合于不同环境的最优农产品组合。无论农夫在自己那块地上耕种了多久,要想知道最佳农用产品组合,整合不同土壤、气候和环境条件的农场信息会比只看自己一家经验更有效。
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18