京公网安备 11010802034615号
经营许可证编号:京B2-20210330
光用大数据锁定消费者没用,要为他们创造价值
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
大数据给营销带来了非常大的希冀。特别是,它能解决营销人员一直觉得棘手的两个问题:
1. 谁在什么时候以什么价格买了啥?
2. 客户所听、所读和所看到的东西究竟与他们消费购买有无关联?
解决它们就能更容易地锁定目标客户,发现并消除所谓被“浪费了的50%”的广告预算,从而使营销变得更高效。因此,为了解决这两个问题,营销官们把自己的 大数据 望远镜对准这样一个目标:预测消费者的下一笔交易。他们努力地画出每位消费者更为详细的用户画像、记住他的媒体偏好、仔细观察他的购物习惯、并将他的喜好愿望和想要的都进行归类。其结果就是给出了一个精致、高分辨率的用户特写,揭示他的下一步举动。
然而,急着探索和瞄准下次交易令许多行业很快面临一种令人担忧的现实:赢得了下一笔交易最终也只是短期的策略优势。它忽视了一个巨大且必然的结果,那就是如果每个竞争者都能掌握了预测客户下一笔交易的能力,营销官们也会不可避免地牺牲掉边际交易的利润。这种没有赢家的短期军备竞赛最终会导致在中长期让所有竞争对手地位均等。追求下一笔交易将不会带来持续性的竞争优势。
这并不意味着企业不应尝试去预测和捕抓消费者下一次的购买意图。而是他们要知道,只有在竞争对手普遍落后,成为领先者还依旧有点儿优势的行业里,这种做法才能取得高于平均水平的回报。在旅游、保险、电信、音乐和汽车这些行业里,各竞争对手之间的预测水平已迅速趋于平衡, 能从预测下一次购买中获得的可持续竞争优势已非常少。
营销方案若想依靠大数据获得持续性优势,就必须问一些有关长期客户粘度、忠诚度以及客户关系的战略性问题。基于大数据提出的问题,不仅要关注什么能诱发下一次购买,也要问问哪些因素能让客户保持忠诚;不仅看客户下次愿意付多少价钱,也要问问他们能提供的终身价值是多少;不仅看怎么从对手那里挖来客户,也要问问在对手有更优惠的价格时,怎么才能让他们留下来。
要想知道这些更具战略性问题的答案,就得以不同的方式运用大数据。与其只看如何用数据锁定客户,我们更应该关注如何用大数据给客户创造价值。也就是说,我们需要做个转化,不问大数据能为我们做些什么,而是关注大数据能为客户做什么。
大数据能帮助提供设计资料,增强产品与服务,或完全打造一个全新的出来。简单例子有像亚马逊和Netfilx,通过推荐引擎减少搜索和评估成本,给客户创造价值;或者是像Opower利用定制化的使用信息增强商品的实用性。更有趣的例子是一些来自众包的数据,可以回答消费者诸如“我能从其它消费者学到什么”或“我跟其它消费者相比起来如何”等重要问题。
多参考一些利用大数据创造新价值的初创公司能给我们带来不少启发。Opower允许客户给他们的Facebook好友分享自己的水电账单,了解自己与其它用户相比起来排名情况如何。 INRIX则是集合客户手机和其它来源的交通数据,提供实时的路况报告。房地产网站Zillow结合各方信息给买家、卖家和中介提供关于地产特性与价值,性价比高的房地产以及市场特征的综合洞察。这些公司都是天生大数据企业。他们的成功也为所有行业敲响了警钟:今天,所有的生意都是信息生意。
每家公司可以通过以下三个问题,来判断自己能如何利用大数据给客户创造价值:
1.哪种数据能帮助我的客户减少成本与风险?
市值数十亿的公司如Yelp、Zagat、猫途鹰、优步、eBay、Netflix和亚马逊都会处理大量数据,例如给出服务提供商和卖家的点评排名,以降低客户的风险。目前,这些关于好坏的排名已成为评判卖家的标准。但是越来越多客户希望得到关于某些问题更为详细的答案,比如与我相似的消费者对此产品或服务有什么看法。要回答这些细致的问题,就需要更深入了解客户究竟在找什么,以及他们是如何看待自己的。这将是下一代大数据价值创造的契机。
2.有哪些数据目前还很分散,但聚集起来会产生新的洞察?
有没有一些数据(如击键或地点信息)一旦集合起来会有价值?非洲一家了不起的初创公司InVenture将智能手机里的附带数据转换成为信用评价等级,让金字塔底层的客户也可以贷款或购买金融商品。在一个多数人都没有信用历史的地方,并没有信用评级存在,因此初级的手机使用数据也能用作信用评价标准。那些将自己的联络人姓和名都储存整理的人更有可能还款。
3.客户多元化与差异性要达到什么样的程度,聚合不同客户的数据才真正有用?
比如销售农用产品(种子、肥料和杀虫剂)的企业能从分散于不同地区的农民那里收集数据,从而判断适合于不同环境的最优农产品组合。无论农夫在自己那块地上耕种了多久,要想知道最佳农用产品组合,整合不同土壤、气候和环境条件的农场信息会比只看自己一家经验更有效。
大数据协助营销官们解决了一些长久以来没有答案的基本问题。但大数据真正的贡献在于给客户创造新价值。只有这样,营销人员才可以把数据转化成持续竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01