
想学数据分析?先来看看基础入门吧
谁说菜鸟不会数据分析的读书笔记,读完这本书的第一感觉是,excel已经够喝一壶了,不要急着想学SPSS、SAS,还是先从基础的看起吧。
做数据分析切忌为了分析而分析,要有明确的分析目的,一般会借助于一些理论模型来知道分析,比如:
营销方面的理论模型:4P、用户使用行为、STP理论、SWOT等,管理方面的理论模型:PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则。
书中列举的这些理论模型很多都听说过,只是平时处理问题很少用到,或者说没有人带着去切实的拿这些理论解决过实际问题,所以也就在平时很少想起了。不过在看这些方法的原理时,还是觉得蛮牛的。
数据收集常见的就是网络、数据库、调研等。
数据处理有数据清洗以去除垃圾数据,并且进行相应的转化计算。
后面花了很大的篇幅讲数据展现,还是比较全面的,见识了各种数据图表是如何做出来的。
其中讲了平均数、绝对数、百分数等几个以前小学学的概念,捡个现在用的比较多的说下:
倍数是一个数除以另一个数的商。
番数是指原来数量的2的N次方。N是几,就是现在的数据较原来的数据翻了几番。
以月为栗子来说明
2016年8月的数据较2015年8月的数据为同比。
2016年8月的数据较2016年7月的数据为环比。
书中有一个有意思的表格说明了方法论在数据分析中的位置:
作者用数据分析与服装师设计做类比,来说明方法论就像服装的设计图纸一样从整体上指导数据分析按照一定的规则体系完成,而不是抓到一块分析一块。
下面讲讲都有哪些方法论:
这个方法的名字其实就是四个分析因素的首字母缩写,分别是政治(political)、经济(economic)、技术(technological)和社会(social)。
一般用于从宏观层面分析企业或行业所处的环境。
也是英文首字母,何时(When)、何地(Where)、何人(Who)、何因(Why)、何事(What)、如何(How)、何价(How much)。
这个分析方法用途还是蛮大的,可以用于很多场景的分析,比如用户画像、用户的购买行为等等。
这个分析方法,如果你会用思维导图工具的话,一看就明白,其实就是将一个大问题一层层拆分成一个小问题,以便更好地分析问题,查找解决办法。
这个理论还真的是用于营销的,4P分别是产品(Product)、价格(Price)、促销(Promotion)、渠道(Place)。主要用于产品的营销分析。
强烈建议看到本文的小伙伴随便找一组数据在excel的“表格-条件格式”中的各种条件格式试一遍,你会发现,真的很好玩,原来一些看起来很炫酷的功能其实excel是可以轻松实现的。
挺实用的功能,用于多个不连续的空白单元格一次性填充相同内容。具体操作步骤如下:
1、按住ctrl不放,用鼠标左键一个个选中所有空白单元格。
2、选好后,放开ctrl,输入要填充的内容,这时,填充的内容会显示在最后一个选中的单元格中。
3、关键一步,按住ctrl不放,再按enter,这时,所有之前选中的单元格都会被填充上相同的内容。
函数比较难在博客中讲清楚,几个重要的函数,同学们可以自行百度一下具体用法:
取左部字符——left();
取右部字符——right();
字符合并——concatenate();
在表格的首列查找指定数据,并返回表格中需要的其他数据,用于两个表格匹配合并——vlookup();
跟上一个类似,是在表格的首行查找指定数据——hlookup();
年、月、日提取——date();
计算时间间隔长度,常用于工龄计算——dateif();
数据随机抽样——rand();
这也是比这之前一直很苦恼的一个问题,书中讲的方法不错,这里沿用书中的人才评价的例子说明:
如上表,将所有指标建立一个矩阵,一一进行对比重要性,行比列重要,交叉单元格写1,反之写0,比如人品对比动手能力,人品没有动手能力重要,则写0。注意,各指标不与自己做对比。
完成表格后,每一个指标都会有一个自己的得分,得分越高,权重越大:
某指标权重=(某指标重要性合计得分/所有指标的重要性合计得分)*100%
单独列出来,是因为这个excel的这个功能真的很好用,不过在博客也很难讲清楚,还请同学们自行百度一下,“数据透视表”,好用的不能再好用的功能。
书中这部分展示了各种炫酷的图表样式,适合浏览一下,以后用的上可以查阅,这里也做简单罗列:
柱状图、雷达图、条件格式(这个不是图形,是在第4点提到的功能,很强大,可以实现一些炫酷的效果,比如数据条、图标集、迷你图)、平均线图、双坐标图、竖形折线图、矩阵图、气泡图。
总体来看,这本书对我这种只会用excel最最基础功能的小白来说,还是蛮多惊喜的,至少有了一个全局观。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18