
如何进行实用行业研究与行业分析
老规矩,来个图文并茂基于欧洲某行的分析方法。写之前需要说明:不同机构不同方法,有时候区别可以很大(买方或卖方),同一个机构不同部门都有可能有不同的方法(equity或credit,对内的或对外的)。同时,行业分析本身比较复杂,一两句不好说清楚。
这里我从银行的角度来简单介绍其中一种:这个框架和逻辑适用于大部分行业的基本分析,基于从业经历,非教科书。有时间会逐步更新,尽量多加点干货。
PS:个人感受,如果想很懂这个行业,最好与这个行业的从业者,金融类长期跟进这个行业的人(比如一直跟进某些行业的客户经理或者信贷部门的credit officer),或专做某些行业研究的人多聊聊。他们有时候一句话胜读十年书,可以让你的行研报告很出彩,也有很多独特的经历看书是永远找不到的。
1. 一个行业中长期来看会往哪个方向走(forward-looking)
比如金属采矿行业:铝:国外市场供需慢慢平衡,国内大部分区域继续供应过剩,价格影响;铜:中期来看供应过剩,对于部分效率低的采矿企业,价格或低于cash cost
2. 识别出这个行业的关键风险和成功的驱动因素:
比如矿企:市场价格风险,成本风险,对冲风险,高资本支出(high CapEx/ cost overrun),政治风险,流动性风险等
再比如石油与天然气:政治风险,泄露风险,变差的fiscal terms,大宗商品价格波动性,特殊事件,环保,项目风险(油砂,深水),高度资本密集性和周期性等
3. 这个行业成功的企业和失败的企业大概都有哪些,为什么?
完全不想大方向,说明态度有问题。还有一点就是见过一些银行的初级分析师,连某些行业上下游都没分清楚呢就开始动笔分析了(某些大宗商品行业),搞笑么?多少想一想,了解一下这个行业的大概情况,起码搞清楚是驴还是马,然后再着手写报告。
行业分析基本的框架主要有四点组成(强调,是分析框架,不是写报告的顺序):
######1.1 经济周期######
经济周期是自然的经济波动,表现为经济的扩张与收缩。根据一些关键指标可以分析出目前处于经济周期的哪个阶段,见下图:
结合行业,我们主要划分为两类:
Non-Cyclical 非周期性行业(平时生活必须的 – Necessity):如电力(没电看不了电视),供水(没水冲不了厕所),FMCG(快消)类等
Cyclical 周期性行业(不是平时生活必须的 – Discretionary):这种行业波动性较强,与经济周期的相关性高,当整体周期处于上升阶段的时候,这个行业往往发展的比较好,如汽车(没奔驰可以开夏利,没夏利可以骑自行车),旅游(不出远门可以去家旁边的街心公园),高端时装(这辈子没穿过就),航空(与旅游等行业相关)等。
周期性行业又可以细分为两类,主要取决于这个行业被周期影响的时间点(早或晚):
早期的:如汽车,房地产(经济的波动或拐点会比较快的影响到这些行业)
晚期的:如技术
值得一提的是,行业又是通过产业链相互连接的,如下图展示的钢铁(高度周期性行业):
关于这方面的”课本”,推荐一本标准普尔(S&P)出的书(企业信用分析基础):Fundamentals of Corporate Credit Analysis
信贷周期与经济周期类似,主要分两个阶段:
增长阶段:表现为利率低,贷款条件比较灵活自由等(e.g. 个人或企业容易从银行借钱)
收缩阶段:上升的利率,贷款条件严苛等(银行翻脸不认人了)
收缩阶段往往持续到商业信心开始恢复,金融机构对经济增长前景重回乐观。
放一个近些年信贷周期的图例来说明(1990-2007危机前):
看了大方向,下面分析行业与企业。题外话:我一直觉得搞行业研究不容易,因为不光需要对宏观经济有一定了解,最好还要能看懂大部分的公司财务等。这是一个相当的知识与经验积累的过程。而且,很多大型银行内部做行业研究或组合管理的人有时候还要对自己银行的产品组合,整体风险胃口有了解,将这些维度都联系在一起,是挺有挑战性的工作。
商业风险主要指的是企业因为不确定性导致的利润减少甚至亏损的风险,如:
个人觉得,这一块主要是基于对个体企业的分析与理解,转为对宏观行业的分析与总结(我觉得做行业分析的人最好也有一定的企业财务等分析的基础)。可以参看我的另一篇文章,里面谈到了比较具体的企业信用分析方法:AlphaGo 的数据算法,能否用来分析银行信贷企业的各项数据,然后得出关键指标和权重? – 钱粮胡同的回答。
用图来总结的话,大致如下:
这里有两个小建议:
1:因为题主问的是初入金融行业,所以我推荐可以去参考一些企业或银行的债权募集说明书看一看,里面的基本分析和框架可以借鉴,有价值。
2:还有就是,个人经验,不要拿来就用各行业高度概括的数据(aggregate data)分析行业的财务等指标,土方法是自己亲自做几个同行业企业的财务分析(自己选几个同行业的公司,上市的发债的都可以,网上下年报或审计报告),做着做着对这个行业的感觉就来了(peer comparison的思路)。有时候一份好的审计报告或年报,可以学到不少这个行业的干货。
识别行业的价值与驱动因素,更好的了解行业。一般可以从价值链的角度分析:
价值链不同环节的重要性和整合性因行业不同而不同。驱动因素的识别主要去看哪一个环节对于这个行业的利润增长有最大的影响。如奢侈品类时装的驱动因素包括:可支配收入及品牌(营销);一般类时装品牌的驱动因素则集中于成本控制与效率(供应链管理,存货管理,分销渠道等)。再比如矿企,自有矿藏是否充裕,质量如何等等。
这一块我不是行家,不班门弄斧了,建议多与这个行业的参与者交流。
需要说明的是:这里我们谈到的企业价值对于权益类来说很重要,对于信贷来说现金流更重要。
现金流这块主要是从银行角度看的。影响现金流的因素取决于行业的特征,如应付和应收账款类驱动因素是由行业特征和运营方式等决定的,如:
有强势地位的企业:长期且宽松的支付条款,导致大规模的应付帐款,现金流或变好
某些细分行业:Daewoo(大宇造船),周期长,客户少,导致客户支付条款苛刻,应收高,现金流或变差
其他影响现金流的因素还包括:存货,资本支出 (CapEx),SG&A费用,预收预付款等。
这些都需要具体行业具体分析,不能一概而论。举个简单的例子就是:同样都是现金流,大宗商品贸易公司(Commodity Trader)的现金流(银行更多的用作sanity check)与一个传统制造业企业的现金流是没有可比性的。
考虑了上面的因素后,一个简单的行业分析报告包括(这次不是框架了,是写报告的顺序):
当前的经济与行业发展:包括一些与行业关系较大的经济指标变动,相关法律法规的变化等,宏观角度
行业前景与趋势:可以分各个子行业来分析一些供需指标,利润边际,市场份额等,比如汽车类的话可以分Light Vehicles, Trucks, Auto Suppliers and Tyres来逐一分析
财务特征:行业整体利润率,资产负债表的稳健度,重点企业的股价与债券情况(如maturity),外部评级(三大和中国本土的),对应的CDS(信用违约互换)走势(如果有的话),近期行业收并购的情况,ABS(比如汽车行业的次级资产支持证券,这块目前发行最大的应该是福特汽车)等等。
行业特征:根据子分类,比如石油行业分整合型(IOM),国家型(NOC),独立(E&P),冶炼与分销(R&M)及服务(OFS)等,可以有个大概的风险收益评估。
总之,行业分析复杂,一两句话无法说全面。这里仅提供分析的框架和思考的角度,之后有时间再更新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15