导致人类而非机器人成为数据科学关键的原因有哪些
科幻小说中经常把人类的未来想象成人工智能将会有至高无上的统领权,并且取代人类,完成人类一切可以完成的事情。坦率地讲,当这样的科幻场景开始引入科学技术的时候,并没有太多的好处,因为它会让人类对于“什么样的人会做好事”和“类似深度学习的其他什么样的高科技可以做得更好”这两个问题失去专注能力。
在数据科学世界的深度学习领域当中,我们正在大跨步的向前迈进。我们已经取得了如此巨大的进步,以至于人们会有这样的想法:我们不需要欣然接收数据科学的那些繁文缛节,取而代之的是我们只要再稍微等一下,我们就可以拥有类似Waston这样的盒子来为我们执行一切事务。如果你真是如此设想的话,那么你将要错失良机,接下来就是其中的原因。
1. We Dole Out the Work 人类可以派发工作
深度学习以及大部分的数据科学技术,他们的任务处理能力都被限制在一个相对狭隘的范围内。深度学习一词是对于目前阶段机器学习的最高级形式的一种描述。机器学习作为一个程序系统,其目的就是通过对采用多种统计与算法技术的基于原始数据的复杂模式的观察,发现其中你想要的数据。深度学习技术在图像识别或者其他数据集的某些特性方面以及对于感知任务的有效处理能力,得到了广泛地验证。大多数情况下,你可以将庞大的处理过程化解为一个更加简单的模型,这样你就可以预测出某些事情,而且可以从中找到某些隐藏的提示。深度学习技术的成功代表作包括翻译(比如谷歌翻译和百度翻译)和语音识别(包括苹果手机的Siri和Google Now功能),也包括图像识别,甚至还可以玩视频游戏以及放飞直升机模型。
如今,我们没有理由不为深度学习取得的胜利成果欢呼雀跃。但是迄今为止,深度学习系统也能把一些专业化任务完成的很漂亮,而绝非仅仅能够懂得特定情况下的事务。Zachary Chase Lipton曾经发表了一篇博文,该博文的内容主要是调查了各种指出深度学习系统存在破绽的论文。博文的调查结果证明深度学些系统大都是不堪一击并且能被轻而易举地愚弄。深度学习的关键点在于它懂得什么时候这种技术可以运行,什么时候不运行。
2. We Provide Context 人类提供了场景
无人驾驶汽车本身不知道自己开向哪里也不知道为什么要这么做。我们需要人类提供场景,来形成日常遇到的问题,形成假设的前提并且决定运用什么样的深度学习和数据科学。即使当今大多数的先进系统都还是只能把一件任务做得非常完美的“白痴学者”,但是这种系统本身根本不会为自己提供更宽广的情景。
在任何一种机器学习或者分析问题的领域内,人们所扮演的最重要的角色之一就是决定目标是什么。建立一个可以优化价值的系统很容易,但是结果却发现你一开始打算解决的问题就选错了。在接下来相当长的一段时间内,人类仍旧是唯一的确定难题的主体,也只有人类才能知晓什么才是真正重要的事情,并且可以核实系统是否能够像我们所期待的那样在面对问题领域的直觉理解时发挥预期的功能。
高级系统不知道应该何时将他们自己关闭。在2008年的经济危机之后,人们选择关闭很多交易系统项目,因为人们对这些系统所做的假设条件都没有起到任何帮助作用。在任何情况下,作出关于生死抉择的提议或者带有关键性经济后果的系统往往都是需要人类进行监管、改进并且其决定由人类进行批准的白盒系统。
3. You Can’t Buy Deep Learning 你无法购买深度学习技术
深度学习以及数据科学技术的服务产品化过程不会很快到来。丰田汽车公司将要为应用到无人驾驶汽车技术的深度学习投资十亿美元。到目前为止,无人驾驶汽车并未使用太多的深度学习技术。Google和Facebook正急于将深度学习技术产品化,但是大多数仍旧处于研发阶段。这一切看起来前途似锦,但还是让我们直面现实吧:大多数美国人都在电视上看到过Woston的商业广告,而不是Woston掌权的产品。
在深度学习和数据科学领域内,真正赢家是那些懂得这些强大工具本身的限制并且可以通过正确的方法利用他们去探索未知世界的公司。那些拥有数据科学技能的聪明人,才是让你立即或者在未来迈向成功的关键所在。
数据科学和机器学习的世界总是让人感到兴奋并将不断的壮大。诚然,我们必须意识到机器学习仍旧需要借助人类的维护和监察才能获得成功。我们必须持续加强并整合商业机构当中的数据科学部门,以便于让机器和机器之间有更加畅通的交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03