京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让制造业企业充满发展机会
制造业强调提升创新能力和基础能力,今年是“十三五”规划的开局之年,“十三五”规划的先进战略聚焦宽带中国、云计算、物联网、大数据等项目。而这正是智能制造迫切需要的,所以现在对智能制造来讲,充满发展机会。
难的是写程序
早在1956年,以麦卡赛、明斯基、罗切斯特和申农等为首的一批年轻科学家探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语。直到最近韩国围棋手李世石败给谷歌的人工智能,人们一度质疑,人工智能会不会超越人类智慧。
人工智能要超越、统治人类,目前来看难以实现,很多处理能力是晶体芯片的物理特性没有办法突破的。从系统理论的九个层级来看,第一层级是静态系统,然后是简单动态系统,到第九层级是超级系统。人类目前的系统理论,还处在第三层级回馈系统,类似于温度控制,温度高于或低于某个数值机器的压缩机自动启动或关闭。
目前,大型、快速的计算机存储,硬件制作并不困难,难的是写程序,因此人工智能取代人类智慧短期内不会发生,但是我们可以充分运用它的记忆、运算等强项,在制造领域提升生产效率。
工业制造方面的困难处处可见,工业革命时期的集中化、同步化、标准化已不适用。现代人的要求更多样化,各种尖端设备及其生命周期的大幅缩短,都增加了制造难度。
人类追求更美好的生活,要提升生产效率,就必须要实现自动化,自动化过程也是人类自我调试的过程。大数据是制造业智能制造的基础,其在制造业大规模定制中的应用,包括数据采集、数据管理、订单管理、智能化制造、定制平台等。定制数据达到一定的数量级,就可以实现大数据应用。
通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
产业整合待实现
在生产条件变得更严苛的当下,中国提出“中国制造2025”方案,就是决心在十年内努力打造制造强国。去年底,工业和信息化部、国家标准化管理委员会联合发布《国家智能制造标准体系建设指南》,就是要解决一些智能设备、传感设备标准不一的问题。智能制造在推动过程中最严重的问题之一就是设备标准不统一,一旦有标准可循,生产难度也会降低。
工业4.0就是利用大数据、物联网,把it(信息技术)和ot(计算技术)结合起来。随时掌握生产信息、性能情况,得到产能跟质量的数据。所以工业4.0的效益非常大,它是一个跨产业、跨供应链、跨价值链的整合。整合内容从软件工具到机器设备到系统集成到产品制造等,定制变得可行,生产具有高度弹性,对生产力有极大提升,是国家强大的一个方向。
智能工厂的传感器可以产生庞大的数据量,用数据定义软件、软件定义网络、网络定义资料中心,如此引申就能够整合智能工厂的管理,包括探知、诊断、控管、可视化全方位得以实现。
利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,并将极大地减少库存,优化供应链。同时,利用销售数据、产品的传感器数据和供应商数据库的数据等大数据,制造业企业可以准确地预测全球不同市场区域的商品需求。由于可以跟踪库存和销售价格,所以制造业企业便可节约大量的成本。
消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘、设备调整、原材料准备等步骤,才能生产出符合个性化需求的定制产品。
利用大数据做支撑
过去,设备运行过程中,其自然磨损本身会使产品的品质发生一定的变化。而由于信息技术、物联网技术的发展,现在可以通过传感技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,真正实现生产智能化。因此,在一定程度上,工厂的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
从生产能耗角度看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01