京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据行业新手、从业人员职业生涯提升计划
市场对于数据科学家的迫切需求使得众多IT专业人士开始认真考量这一前景可观的全新发展方向。
数据科学已经快速成为IT领域中一大炙手可热的职位选项。受到生产环境内结构化与非结构化数据以创纪录速度膨胀的积极推动,这一领域快速发展。不过,更为重要的是更为强大且成本低廉的数据科学工具的不断涌现,包括微软Excel到Python再到 Hadoop。这些足以帮助小型初创企业、大到谷歌及Amazon等网络巨头搞定自己面对的具体数据分析难题。
因此,数据科学已经成为专业人士不容忽视的一大全新发展机遇,并能够为其带来相当可观的薪酬水平。与其它早已成熟的传统技术不同(例如数据库管理),数据科学显然是一类全新领域。这意味着其具备更出色的开放性,而新晋专业人士亦乐于学习与之相关的各类新型技能。
岗位来自哪里——薪酬水平又是如何
粗略地浏览一遍领英上的相关信息,大家基本可以对数据科学拥有初步的市场需求感受。2016年1月,相关招聘帖数量高达 3500条,其职称范围从高级数据科学家到分析数据科学家乃至大数据工程师等等。相关雇主则包括网络领域的各大中坚力量,包括Amazon(70多个开放岗位)、博思艾伦(70个以上岗位)、彭博、甲骨文、美国商业银行以及Capital One等等。
对于那些能够在数据科学领域拿下一个职位的朋友们来说,亦有一份相当丰厚的薪酬等着他们。目前美国本土数据科学岗位的中位数薪酬为每年10万4千美元,O’Reilly Media公司在2015年数据科学薪酬调查报告当中指出。(PayScale亦表示加州地区拥有经验的数据科学家的年薪中位数在10万美元。)当然这只是开始,Robert Half Technology 2016薪酬指南报告称,2016年数据科学家的平均薪酬在10万9千美元到15万3750美元之间。旧金山湾区则是美国数据科学需求的核心地带,不过相关职位的需求亦可谓遍地开花。目前在纽约、波士顿以及华盛顿特区等城市亦出现了旺盛的数据科学人才需求。
六位数的可观薪酬再加上惊人的开放岗位数量,已经促使相当一部分企业将人才物色的目光投向了本地之外。除此之外,也有相当一部分大学及专业协会提供相对应的教育计划,旨在帮助具备数据分析能力的其他专业人士顺利进入这一领域。
雇主们有何需求
微软公司在业内一直以强大的产品盈利能力与可观的研发投入而著称。为了保障自身研发实力,微软方面正在积极吸纳数据科学家与机器学习专家。根据领英上的相关信息,微软公司目前拥有超过400位与数据科学相关之员工,其中一部分员工拥有博士学位。微软公司亦在努力通过校园招聘招徕经验丰富的数据科学专业人员。微软公司招聘人员Robin McMahon谈到了她眼中微软提供的数据科学从业者发展机遇:
“现在为微软公司招聘数据科学家确实相当令人兴奋,因为候选人往往有机会在面试中涉及多个不同部门,”McMahon解释道,她一直在专注于招聘数据科学与机器学习专家。微软公司的数据科学家们正着手构建多种不同产品,包括Azure、Xbox与Bing。
“我们对于各类技能以及数据科学教育及从业背景很感兴趣,”McMahon解释称。“发表过数据科学相关论文能够帮助大家在候选者当中脱颖而出,”她补充道。微软公司会定期向Strata大会派遣招聘人员,从而帮助这一领域补充新鲜血液。虽然拥有计算机科学学位能够更好,但不具备也没关系。McMahon甚至遇到过几位来自生物信息或者其它信息学领域的专业人员,最终他们都成功进入了微软公司。
即使是那些不具备数据科学或者信息学正规教育背景的候选者也能够拥有这样的全新职业生涯——只需要一点激情与耐性。
“自学与对数据科学的热情可以说是数据科学专业人士的关键性素质,”电子商务企业Instacart公司数据科学副总裁 Jeremy Stanley强调称——这是一家专门提供个性化购物与送货服务的企业。“我更倾向于提供现成的挑战供候选者们解决,而不是单纯着眼于其简历内容,”Stanley补充称。“我高度关注候选者们解决问题的能力及其代码编写质量。”
Instacart公司的招聘流程包含可带走的测试内容以及与团队协作解决的问题,Stanley告诉我们。
除了数学与计算机科学知识,Stanley认为数据科学专业人士还应当着眼于客户与产品对数据影响能力加以考量。“这种能够提出正确问题并不断进行针对性学习的能力能够切实帮助数据科学家们成功扮演现有角色并拿到潜在工作岗位,”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27