
数据、大数据及其本质是什么
最近几年,数据问题进入哲学视野。对于哲学家们探索的数据本质特征,我们可以从以下几个方面来把握。
数据与大数据
技术进步,主要是计算机、网络和各种类型的传感器以及云技术、分布式计算与存储等海量存储技术的广泛应用和运算能力极速进步,使得数据概念被大数据概念取代。数据量增加速度之快,大致可以这样描述:最近两年生成的数据量,相当于此前一切时代人类所生产的数据量的总和。
大数据指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。大数据的特征,除了巨大、快速、多样多变之外,没有其他。因此,大数据本质上还是数据。
在大数据的上述特征中,其多样多变性值得特别关注。它表现为所生成数据格式的多样,如文字、图片、视频等各有多种不同的格式,取决于生成数据的技术与设备,却反映出数据生产的时代性以及数据处理的能力与条件,也反映出被描摹自然和社会的多姿多彩。另外,随着技术发展和数据量急剧增长,新的数据格式还会层出不穷,多变和多样特征更加突出。
大数据既是一个技术概念,又是一个商业概念,它的出现,有其特定背景,即it领域的商业和渲染新技术的考量。大数据包揽了人类获取数据的所有途径,提示哲学研究一个全新时代的到来,这个时代的先声,很久远之前就已经响起,那时,它仅仅被称作数据。在我们的讨论中,主要考虑数据与哲学的关联。
数据与认识
这里的认识,指的是人的认识,是人对外部世界的认识。
大数据的出现和引起关注,使得一个事实得到确认,这就是,数据覆盖了人类对于外部世界的感知。感官及其所获得的经验退居到显示屏之后,退居到各种类型的技术装置之后,这些装置将自然和外部世界的映像“转译”成人类感官可以接受的图像、声音甚至触觉和嗅觉味觉。这既是技术发展的必然,又是始料未及的情况。如果说,此前,哲学还试图在技术系统生成的数据之外寻找世界的直观映像,到了大数据时代,这种人类的直接感知即使没有被完全取代,也失去了其传统意义上的优势。一言以蔽之,哲学,需要从数据中寻求对世界的认识,舍此即失去认识的来源。
这似乎是一个惊人的变故,其实不然。在影响人类认识的议题上,大数据带来的变化,只是数量和范围上的,并非根本意义上的改变。事实上,回顾历史,我们发现,我们的对外部世界的感知,从来都是依赖于某些技术装置的,也就是说,人的认识,其实是通过数据获得的。
最早的技术装置,可能是直尺,它用于测量长度,例如田亩;更早的述说技术装备,也许是绳结,它用来述说一件重要的事件。在我国,从河北泥河湾先民打造石器,到安阳殷墟龟甲上刻画的文字,都可以看作是某种“数据”,表达着人类对外部世界的某种认知。而面对着所有这些早期的承载数据的技术装备,人们获得对外部世界的某种最早的抽象认识。古代人先后发明过算筹、斗和称、漏刻、浑象仪、量角器等等,无不是用来产生认知外部世界的数据,人们也发明笔、纸张、雕版印刷术,也是用来记录和生产数据。依托所有这些,数据成为人们认识的依据,思考的源泉,表达的工具。
近代以来,西方的技术和科学异军突起,望远镜、显微镜、六分仪、光谱仪、质谱仪乃至加速器、射电望远镜相继出现,成为人类认识外部世界的有力工具。这些技术装备产生的数据成为近现代思想的新的依托。到了当代,伴随着电子计算机的强大数据处理能力的出现,各种延伸和阔展人类感官感知能力的器皿设备层出不穷,终于完全或接近于完全取代人类对外部世界的直接感知,通过把数据呈现给人类,成为人类认识的来源。这就是大数据的时代。
关键点在于,我们所知的世界,全部是数据表达的,其中一部分获得理解和解释,更多的只是数据,没有得到解释甚至没有得到关注,它只是像自在自然那样在那里,等待人们去搜索发现它,解释它,运用它。
数据与本体
根据上述认识,似乎可以通过观察数据的形成和生产,来理解哲学与科学的在解释客观自然议题上彼此消长。
在近代科学初兴时期,它并没有从传统哲学中分离出来,它被冠之以自然哲学。与之相并行不悖的,有哲学本体论和形而上学。后两者都是试图以某些观念描述和解释外部自然,寻求事物的本质,并在哲学领域合法存在。伽利略、牛顿等人推崇的使用先进观测和实验手段观察与调控自然,用数学述说自然过程。当这一切成为风气之后,哲学本体论逐渐衰退,哲学似乎放弃了对客观世界的描蓦和解释,让位于自然科学。
最后一位试图运用科学数据来解释自然的哲学家是康德,他研习了牛顿的运动力学和天体力学,提出宇宙演化学说。然而,拉普拉斯在康德基础上,用物理理论和数学表述了星云说,在无限时空中的恒星和星系演化学说。拉普拉斯之后,科学之描摹自然优越于传统哲学得到公认。
一般认为,在经典科学时代,哲学与科学在描摹自然方面的差异,在于是否运用数据和使用数学方法。今天我们发现,这并非全部问题所在。经典时代,直至大数据崛起的今天,自然科学的确在使用各种技术装备获得的数据方面占据优势地位,哲学则固守传统的概念分析和一般推理方法,这还是指的好的哲学。这与其说是哲学落后于科学,勿宁说人类获得数据的能力尚有不逮,给传统哲学留有施展余地。
大数据的出现,包围了人类认知世界的所有方面,情况发生变化。在科学界开始讨论并实施“计算一切”的时候,同时也给哲学重新回到讨论本体打开方便之门。这里发生的变化是,数据成为认知的源泉,思维的质料;我们对世界的解释转变为对数据的解读,舍此无他。大数据的出现,使得我们发现,我们所知的称作外部世界的东西,是通过数据来呈现的,当我们寻求世界的本质和意义时,我们实际上是在数据中徜徉;当我们觉得有所发现有所体悟时,实际上是自觉找到了一些数据之间的关联。
数据的物理学气质
所谓物理学气质,指的是思考事物的本质,从原理层面上对事物的本质进行探究,揭示出事物的基本规律。当前备受热议的数据和大数据是否具有揭示事物基本规律的功能,可能还有待于观察,但是,数据,就其现象而言,似乎已经展示出某种物理学气质,考察这一特性,既有利于认识数据的本质,也有利于深化对物理学的认识。
这里所说的物理学,主要指的是量子力学。
众所周知,量子力学无论在理论上还是在应用上都获得巨大成功,在场论、粒子物理和天体物理学研究上都扮演者基础角色,在固体物理、半导体物理以及超导物理等应用学科上都有极出色表现。量子力学与哲学的联系,比其他任何自然科学领域都要来得紧密,其中最重要的就是认识论问题。
量子力学发现,建立在测不准关系基础上的认识,受到基本物理原理的限制,客观世界原则上不可能真正被观察到,我们只能根据物理测量结果认识世界。而测量本身形成对客观世界的干扰,导致无法真正认清它的本来面目。所以,我们对于世界的认识,唯一来源就是测量的结果,即所谓经验。
量子力学的这一认识原则引发将近一百年的讨论,至今未能平息。
尼尔斯·玻尔认为我们必须接受量子力学给出的认识原则,承认和接受自然作出的安排,量子力学已经很好地描绘了自然;爱因斯坦则不愿接受玻尔的“绥靖哲学”,他觉得一定是量子力学本身的不完备造成,人对自然的认识应该是能够穷尽的,不可能也不应该像量子力学所描绘的那样。
当我们回顾前述数据与大数据的认识论与本体论含义时,就明白,一直以来有关量子力学问题的争论,本质上就是对于数据的意义的争论。显然,爱因斯坦不愿意接受数据给出的结果,以及对于数据的解释,而玻尔则认为数据揭示的自然正是自然本体,无论我们是不是喜欢它。
有趣的是,人们一直在争论量子力学的测量问题,此前却几乎从来没有人意识到测量的结果本身就是数据,而数据已经成为事实上的认识来源。离开数据,我们对于世界一无所知。
在这个大数据时代,当我们认识到,数据正是我们认识世界的源泉,所谓世界其实就是数据构成的,我们也会看到数据本身所具有的物理学气质,正像量子力学所强调的那样,世界隐藏在经验表象背后,我们所能谈论的,只是经验本身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15