京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的商业如何转型
随着去年国务院《关于促进大数据发展的行动纲要》的发布,中国大数据产业进入了高速发展阶段,大数据技术的创新和商业应用的脚步明显加快,大数据在细分领域的落地层出不穷,成为一场贯穿用户生活的互联网变革。
在这场变革里,BAT先知先觉率先发力,针对大数据动作频频——百度着重基于用户搜索行为的需求数据、阿里侧重交易及信用数据、腾讯掌控着社交关系数据。除此之外,金融、零售、快消、电商、媒体等领域的大数据案例也层出不穷。

“2016年是大数据行业最为关键的一年,中国大数据产业已经进入了实际应用阶段,还没有部署大数据的企业未来将会失去更多优势与竞争力。”在36大数据创始人刘金玲看来,今年是大数据行业的拐点,整个行业正处于爆发的前夜。
那么,大数据究竟往哪些方面能挖掘出巨大的商业价值?企业又该如何通过大数据获得更多的收益?7月6日,在北京召开的大数据商业应用与创新峰会上,众多业内人士对此展开了一场深入的探讨。
正处于爆发前夜
如今,大数据正在成为继云计算之后抢占市场制高点的又一领地。无论是企业级市场还是消费级市场,都与大数据发生着千丝万缕的联系。
根据互联网数据中心(IDC)的定义,大数据是指为了更经济地从高频率获取的、大容量的、不同结构和类型的数据中获取价值而设计的新一代架构和技术。最为重要的是,大数据对整个基础架构和软件、服务带来巨大商机。
IDC发布的报告预测,全球大数据技术及服务市场复合年增长率将达31.7%,2016年大数据市场规模将达到238亿美元,2017年这一规模还将达到324亿美元。2018年全球大数据技术及服务市场复合年增长率将达26.4%,规模将达415亿美元。
“大家现在已经不再空谈概念,而是大数据的商业模式,那些对大数据持有观望态度的传统企业,今年将会纷纷部署大数据。若企业今年还没有实施大数据战略,那么未来将会失去很多优势。”在刘金玲看来,我国大数据的技术已经相对成熟,整个行业开始步入实际应用阶段,并将进入高速发展时代。
“2016年下半年到2017年,中国大数据产业的竞争将会越来越激烈,拥抱客户快速迭代数据产品将是大势所趋。”神策数据创始人桑文锋补充道。
亚信数据大数据云平台部副总经理武源文同样表示赞同。他认为2016年中国大数据行业出现了很多大而全的数据聚合平台,预计到2017年,在全国一线、二线乃至三线城市将会出现更多垂直细分领域的大数据聚合平台。
数据流通将会产生巨额收益,在刘金玲看来,随着社交红利和人口红利的慢慢消失,未来肯定是竞争数据的时代。
仍缺少点想象力
大数据是如何赚钱的?刘金玲将其分为四个方向:解决方案、基础设施、工具/产品化服务、行业应用。
解决方案主要集中于智慧城市、公共交通、政务、反恐、环保、防灾等公共事业领域。从国家及各企事业单位招标的情况不难发现,该领域的招标额是巨大的(小到几百万大到几千万元),因此,目前大部分大数据公司都集中于这一领域淘金。
基础设施则是以技术为导向,包括数据库、数据工具、大数据引擎、软硬结合一体机以及借助数据做的API接口和Hadoop商业化版本等。另一个盈利点则是工具产品化服务,比如精准推荐、个性化推荐、商圈选址等,商家通过付费按需购买。
值得一提的是,行业应用将是大数据产生最大商业价值的领域,“因为它的技术趋向于成熟,数据也在逐渐被收集、分析。”刘金玲说,衣食住行、医疗、教育都是它的盈利方向,也是依托于传统行业和现有的行业去做的应用。
在刘金玲看来,大数据是非常性感、有意思的东西,它的表现形式也不是一堆代码,而应该是能执行的产品工具,但是目前大数据产品仍然缺少一些“想象力”。
“我们不能再以传统的思维、IT服务的思维或者外包的思维去做大数据。”刘金玲说,“并不是说传统数据库、统计学没有用,而是大数据到底该通过何种产品形态表现出来。”
另外,只想象不做那也只是假把式,大数据产品还缺乏一定的执行力。“想象力、技术需要落地,而不是飘在云端,没有人在意你的看法,只有人在意你做出了什么东西。”刘金玲表示,可执行性是目前大数据行业最缺的东西。
事实上,对于当今的企业而言,数据就是一种重要的战略资产,它就像新时代的石油一样,极富开采价值。如果能够看清大数据的价值并且迅速行动起来,那么,在未来的商业竞争中定会占得先机。
但是,目前无论大数据应用在哪一个领域,商业模式并不是都很成熟。
“如果部署大数据架构两到三年没有见到成效,很多公司都会撤掉这个项目或者不再投入预算。所以下一步如何让大数据产生价值,应用到行业当中去是我们应该思考的重要课题。”刘金玲说。
商业模式待探讨
如果把大数据当作未来的石油,发动机又是什么?那就是更直接快速的商业模式。
“大数据最兴奋的点不在商业,其实应该放在政府的智能管理上。”中国传媒大学教授沈浩表示,2017年大数据行业将会出现更多实质性的应用,政府数据的逐一开放将刺激全行业,衍生出更多的商业模式。
实际上,很多大数据特别是敏感的数据都掌握在政府手中,国内领先的移动数据服务商聚合数据曾经在此做过多种尝试,包括跟运营商和电力行业合作,但整个合作过程非常缓慢。究其原因,聚合数据技术总监邵加佳分析道,一方面是资源问题,一方面是决策问题。
“很多时候科技的发展是超过了政府服务的想象力或者它的边界的,我们通过政府跟公司合作的方式,推动政府往前看更远一步,通过数据未来的合作,不管是在民生或是商业方面将会提供更多的应用。”邵加佳说。
“政府是拥有大数据和开放大数据以及制定大数据开放策略的重要一方,如果政府借助于商业,开放更多的API接口,那在这个方面大数据会带来更多的应用。”沈浩说。
奥维万象COO郭梅德则表示,信息孤岛必须要打破,行为数据、运营数据、零售和交易数据进行打通,打通之后我们的数据才可以真正应用和落地。他表示,奥维万象2017年将持续开放更多家电生产和制造的相关数据,智能化制造在家电行业应用会更加广泛,数据的开放和流通应该是未来的趋势。
“2016年下半年到2017年,大数据行业竞争肯定越来越激烈,大家会越来越发现大数据是有前途的行业。”在桑文锋看来,从发展趋势来看,大数据会越来越贴近于应用方向,会与应用结合得越来越紧密,比如航空和零售。另外一种趋势是,大数据公司中什么都能干的公司会越来越少,取而代之的肯定会是更为专业的公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27