
大数据分析的新时代宠儿能否不辱使命
提起“零编码”运动,相信很多人都很陌生,对于生活在大数据时代下的人们,必须要了解“零编码”运动,“零编码”运动由比尔·盖茨发起,史蒂芬·乔布斯对其进行了完善。这项运动正逐渐延伸到资本市场。
1979年,在乔布斯参观帕洛阿尔托研究所中,当他看到了命令行界面的指向-点击更换的第一个原型时,便萌生了进入用户友好界面时代的想法:“他们给我展示的第一样品便把我深深地吸引住了,它就是图形式用户界面……仅仅十分钟,我便意识到,在将来,所有的电脑都会以这种方式来工作。”
我们已经习惯于用指尖将含有上百万数据点的虚拟图进行放大查看,用系统把相关信息用阶段和层次来展现,正如我们敲击电话号码、图片、地址及全球定位系统(GPS)那样。在用声音调控、实时计算数十个替代性交通路线的同时,再使用实时卫星数据来监控数百万车辆运行情况如何?这只是硅谷(Silicon Valley)工程师研发的课题。
相比之下,处理金融数据则只有两种选择,要么就采用普通的计算方法,但受限太多,否则便使用专业工具,让受过专门训练的人来操作。
电子数据表并非程序语言。它们在建立金融大数据模型并用于运算时,无需处理速度。这让人们走向数据分析时代,造就了大量的数据科学家,他们用复杂的程序语言来建立数据模型。但这种方法并非万灵药:数据分析师可谓凤毛麟角,因此雇佣成本极高,他们通常需要数天时间才能提交一份死板的个人报告,而且这些报告通常未相互整合。花大量时间来整合数据,并使之标准化是一项枯燥的工作,就人才利用而言,这显然不是一个明智的选择。
更重要的是,它还会导致依赖性的产生。在全球金融公司中,众多的专业人士在进行风险管理、获取高额利润及建构复杂模型时不得不依赖少数的程序员和数据分析师。在金融和投资领域中,人才被分为两类,一种是能够编程的人,另一种则不能。
然而,即使华尔街的资本家也不得不接受这种酬金及收费结构的安排,意味着他们自己不能独立地计算金融数据,这种依赖性发展是不可持续的。
计算金融学应该人人都可参与其中,非程序员也能掌握高端计算能力,正如像苹果(Apple)和谷歌(Google)这样领先的消费者科技公司将军事导航系统转化为民用的那样,非技术人员用指尖和声控便可实现导航。
Adobe公司是PDF格式文件及Photoshop的发明者,它最近推出了一款名叫Muse的产品,企业借助它可实现“零编码”设计和发行专业网站。当然,如果科技发展到这种程度——非程序员也可使用图形式用户界面(GUIs)来创建企业级的互动性网站时,“研究周期将由天缩短至分钟”金融专家离无需编码即可设计大数据复杂问题的日子也就不远了。
许多在新一代金融科技岗位上工作的人们都相信,我们正进入零编码运动终将到达金融计算领域的时代。
可喜的是,研发图形式用户界面的工作正有条不紊地进行,与此同时,以云为基础、大规模平行计算的技术也在开发中,在它们的帮助下,华尔街的非程序员对大数据可实现近乎实时的复杂计算,同时,还可以对结果进行直观理解和描述。
如此一来,随着数据分析师和程序员的工作对外开放,每个金融专家都可接触到这一“秘密”。他们可以不用编码,不用依赖他人或机构便可以设计和测试量性金融研究和投资策略。
研究周期将由天缩短至分钟。大量的异质信息可以与市场数据进行整合,人们对其几乎可以实时进行直觉分析。这意味着,之前用于数据分析表操控投入的数百万小时及高价人力资本都可以得到节约,目前为这些任务所困的专家也得以解放,以便投入到解决更重要的问题中,并找到所需答案,这一切用声音、指尖和眼睛就可以完成。
作为大数据分析的新宠儿,“零编码”能否不辱使命,履行时代赋予的责任和义务,是人们关注的焦点。从目前来看, “零编码”运动一旦触及资本市场时,将引发革命性的变化。新型零编码平台将孕育可接入性和英才管理,与之相伴的是,人们将能更好更快地做出抉择,在冒险时信息也更加充足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18