京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的七种商业化模式
移动互联网时代,大数据爆发后带来大量流量,运营商将经营重心从话务量转向流量。然而一方面面临着数据流的附加值被互联网公司赚走,沦为管道化的 尴尬;另一方面运营商无差异的“管道”运营正在导致运营商间的价格竞争,降低盈利能力;而为了促进用户使用数据业务而推出的一系列包含较高流量的套餐,再 加上QQ等应用长期“空挂”在线, 低效流量占据“管道”的大量资源,出现了客户感知低、收入流量增长不平衡的局面。

但从另一个角度看,大流量中包含的海量数据,也是产业链上其他环节望尘莫及的。如果能再加上高效的信息分析能力,将帮助运营商在日益激烈的市场竞争中准确决策,深度挖掘数据的价值,提高流量经营的质量。
运营商手中拥有着庞大数据。除了常规的年龄、品牌、资费、入网渠道,终端的IMEI、MAC、终端品牌、终端类型等基础信息外,互联网、移动互 联网、物联网、云计算的兴起以及移动智能终端的快速普及,运营商的网络正在被更完整的用户数据。例如何时何地上网、上网的内容偏好、各种应用的驻留时间、 手机支付信息等等。
在内部运营中,运营商已经从这些庞大的用户数据中,可以分析出不同用户的行为习惯和消费喜好,并应用于在精细化营销基础上。然而就流量经营而 言,就这是远远不够的。就海量数据,提供高附加值的数据分析服务,将数据封装为服务,形成可对外开放、可商业化的核心能力,实现商业模式的创新,才能真正 实现流量经营。
1、数据存储空间出租。
利用存储能力进行运营,满足企业和个人将面临海量信息存储的需求。具体而言,可以分为个人文件存储、针对企业用户两大类。主要是通过易于使用的 API,用户方便地将各种数据对象放在云端,然后再像使用水电一般按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等等。运营商也推出 了相应的服务。前者如中国移动彩云业务;后者如传统的IDC。
2、客户关系管理。
对中小客户来说,专门的CRM 显然大而贵。飞信充当了不少小商家的初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发发新产品预告、特价销售通知,完成售前售后服务等等。运 营商可以在此基础上,推出基于数据分析后的客户关系管理平台,按行业分类,针对不同的客户采取不同的促销活动和服务方式,提供更好和更有针对性的服务,再 提供线上支付通道打通,形成闭环,就是一个特别实用和便捷的客户关系管理系统。
3、企业经营决策指导。
将用户数据,加以运用成熟的运营分析技术,有效改善企业的数据资源利用能力,让企业的决策更为准确,从而提高整体运营效率。如,某店卖牛奶,通 过数据分析,知道在本店买了牛奶以后常常会再去另一店买包子,人数还不少。那么这店就可以考虑在家店可以与包子店合作;或是直接在店里出售包子。
4、个性化精准推荐。
“垃圾短信”是为客户所最为厌烦的。之所以为垃圾,不过是因为收到的人并不需要。而被人认为成垃圾。通过用户行为数据进行分析后,可以给需要的 人发送需要的信息,就成了有价值的信息。比如在日本麦当劳,用户在手机上下载优惠券,去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集 相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
5、建设本地化数据集市
运营商所具有全程全网、本地化优势,会使得运营商所提供的平台上,可以最大程度覆盖本地服务、娱乐、教育和医疗等数据。典型的应用是中国移动“无线城市”。以“二维码 账号体系 LBS 支付 关系链”的闭环体系推动,带给本地化数据集市平台多元化的盈利模式。
6、数据的搜索
数据检索是一个并不新鲜的应用,然而随着大数据时代的到来,实时性、全范围检索的需求也就变得越来越强烈。商业应用价值是将实时的数据处理与分 析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型 应用如中国移动之“盘古搜索”。
7、创新社会管理模式
对运营商来说,数据分析对政府服务市场上更是前景巨大。美国已经使用大数据技术对历史性逮捕模式、发薪日、体育项目、降雨天气和假日等变量进行分析,从而优化警力配置。在中国,运营商也可以在交通、应对突发灾害、维稳等工作范围中使大数据技术发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05