
大数据带来的“大挑战”不容忽视
大数据研究领域可谓炙手可热,然而对数据中的价值加以利用仍然充满挑战。今天,我们将对此类挑战进行详尽解析。
大数据的生成速度令人错愕,事实上90%的可用数据是在过去两年当中才刚刚出现。如今我们需要努力分析大数据,从而发现其中可用以指导决策及战略性业务转型的洞察结论。
大数据应用已经开始在改进产品、提升服务水平及客户服务等领域发挥作用。下面来看一组具体数字:只有17%的企业尚无任何计划建立大数据项目,而超过70%的企业已经开始使用大数据——包括将其整合至业务当中,或者作为试水性项目。数据技术正在逐步成熟,亦有越来越多组织机构准备将其纳入信息管理与分析基础设施当中。
然而,以下大数据带来的“大挑战”同样不容忽视。
找到用于交流大数据的语言
各类科学,包括化学乃至数学都凭借着一种特定语言的出现而获得巨大的推动作用。很明显,我们必须在大数据找到同样值得依赖的特定语言,从而像使用代数符号以及合适的编程语言那样更好地对其加以分析。
提升数据可靠性
随着可用数据量的不断增长,我们必须有效区分“数据”的“信号”以及“有价值信息”。遗憾的是,截至目前仍有很多企业难以找到最理想的数据以及具体使用方式。这区分“垃圾数据”与保障数据质量已经成为一大关键性难题。
数据访问
数据访问与连接性同样是一大障碍。麦肯锡公司调查显示,目前仍有大量数据点未能接入网络,因此企业往往还不具备管理整体业务所必需的数据平台。
将更多复杂数据纳入进来
如果说大数据的起步阶段是在同“简单”数据作斗争(例如数字表以及图形等),那么如今需要处理的数据正变得愈发复杂:图片、视频以及对物理乃至生活环境的描述等等。因此,我们有必要重新审视并构建大数据工具及架构,用以捕捉、存储并分析多样性数据。
更好地整合时间变量
时间维度亦是大数据发展中的一大重要挑战,即如何分析长期因果关系,而不仅仅是处理实时数据流。最后,这一问题亦会给存储领域带来挑战。我们需要认真选择以切实承载如此庞大的数据存储量。
IT架构
数据世界的技术环境正在快速发展,因此能够有价值数据的前提在于同拥有强大创新能力的技术伙伴开展合作,从而建立正确的IT架构以高效适应各类变化因素。
安全性
最后但同样的重要的是安全问题。我们需要利用团队中每位成员的对应身份进行数据访问管理,同时配合适当的数据加密机制,从而避免各类潜在风险。
大数据技术带来的规模化趋势同样给科学、经济以及政治等领域带来深远影响,甚至给人类的发展轨迹打上了深深的烙印。
大数据正挑战我们的分析能力以及对世界的认知方式。因此在迎接变化及不断成长的同时,我们亦应当坚守以人为本的原则,立足精益、与时俱进、秉持诚信并服务于整个世界。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10