
大数据时代传统市场研究的价值
大数据带来的数据化浪潮已经触动市场研究的每一个人。Joan Lewis,宝洁全球客户和市场知识官, 2011年ARF的演讲中呼吁要让社会化媒体的大数据应用于市场研究。她讲到了以下几点:
数据的丰富性和自主性,社会化媒体数据包含了消费者的购买习惯,用户需求,品牌偏好等,且都是消费者自愿表述的对产品满意度和质量问题的想法,充满了情感因素,我们无需费尽心思的引导消费者参与调查问卷
减少研究的“未知”视角,市场问卷调查有其固有的局限性,那就是你必须明确你的问题是什么。问卷设计者本身有未知的方面,所以在设计问题时会忽略自己的“未知”,但这些“未知”很有可能就是消费者所需要的方面
数据的实时化的特征,不同于以往的发放回收市场调研报告再解决消费者问题,如今可以使营销人员快速发起营销活动,第一时间测试营销新方法,同时可以第一时间确认理解和追踪消费者的反馈
数据的低投入特征,传统的市场调研方式费工费时,结合社会化媒体的市场调研则是低投入高回报的产业。使用正确的调研产品和方法便可以对消费者群体的用户习惯和反馈进行透彻分析。运用社会化媒体监测软件帮助企业在线倾听消费者意见,评估获取其见解。
市场研究的使命是揭示消费者视角,为企业提供有价值的洞察和支持企业做出有意义的决策。从这个意义上来说,每一个市场研究人员都应该为社会化媒体平台和数据欢呼,因为它拟补了问卷数据一些方面的不足。(你是不是经常会发现,当我们从事另一个领域的工作时,才会意识到原来工作方法的不足和优点。)另一方面,针对社会化媒体数据分析的新兴公司确实对传统的市场研究公司形成竞争和挑战。
竞争的最大压力是传统的市场研究还没有适应社会化媒体大数据时代的研究体系。正如Joe Tripodi (可口可乐营销副总裁)在《哈佛商业评论》(2011年4月)上指出的,“在印象时代,通过问卷询问方式获取的知名度,使用率,认知度等衡量品牌健康的指标体系,在消费者表达的时代就未必适用。因此,从品牌建设效果衡量的角度,也需要一套适应消费者表达时代的指标体系。”同时,尽管对大数据的整合与分析才刚刚起步,但已经有了一系列令人耳目一新的发现和应用。无数的案例和论著都指出,大数据的整合和分析,其前景和应用不可限量。
传统的市场研究的价值在哪里?或者说,其应该坚守什么才更有价值?
坚持深度 ,坚持基于人类本性的研究框架(陈富国,MetaThink的CEO,2012在CMRA会议上的演讲)。人的行为和态度归根结底是人的本性来决定的,坚持对人类本性的研究才能更好的帮助我们深度理解人类行为模式,以及动察人类行为的变迁。加强对生活本质、生活价值和生命认知的理解,加强对于“意义、“需要”、“体验”和“情感”等等人类内部语言和图式的挖掘。机器不但缺乏“体验”和“情感”,而且缺乏对“意义”和“需要”的理解。由于人类本身具有的抽象思维和语言文本分析能力,正能达到我们在此一领域所需要的深度。
坚持广度, 坚持人与自然,人与社会的研究广度。人类的行为模式是在与自然环境和社会环境的互动中演进的,演进的过程复杂而又有趣。加强对于“个人与群体”,“群体与群体”等等社会群体内部形式和意义的挖掘。互联网已经深刻地改变了人类的群体构成方式(Hayes 2010),而对其意义的思考和挖掘才刚刚起步。
坚持实验设计,实验设计的本质是“控制”。在半人工的环境里我们控制一些因素来测试这些因素的影响和结果,这种研究常被用来探究营销和产品元素的影响。这种方法直接,且非常有效果。例如基于实验设计的联合分析,具有坚实的科学依据,它主要以实验设计科学和数学心理学为基础。到目前为止,联合分析已经发展成为一种含有多种方法的体系,并改变了许多企业的新产品开发过程和市场战略。许多出色的产品,比如麦斯威尔咖啡,拍宝面酱,Courtyard酒店等等,都是联合分析的产出。除此之外,联合分析方法在统计学上的严谨性和灵活性也受到其它领域从业人员和学者的关注,并被大量应用于交通研究、政府政策、医学、经济学以及政治科学等领域。
坚持模型化,模型,简单的说,就是一种事物之间联系和运作的方式。开发模型(探索事物之间的联系和运作方式)是一个非常艰苦的过程,但一旦模型成立,却能极大的简化人们的思维和决策过程。营销人员在繁杂的运作中,需要找到营销元素之间的关联,市场研究要坚持能立足于这一点。
坚持发展测量工具,市场研究本质就是测量,但测量需要测量工具和方法。营销在目前有许多相对抽象的概念,没有对这些概念以及概念之间关系的测量,就没有营销大的发展,比如品牌资产,购买意向等等。
坚持这些原则和方法并不排斥社会化媒体和大数据。恰恰相反,社会化媒体为我们提供了观察和理解消费者互联网生活的平台,毕竟互联网已经成为年轻消费者生活的一个重要组成部分。大数据的分析可能会把许多以前看似不相关的变量联系起来,这种联系会为我们更好的洞察消费者提供线索和引领,也会为我们开发数理模型提供更多的变量和思路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15