京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据分析师”这个职业有多热
根据“谷歌趋势”,在2011年的时候,“大数据”还很少被用作搜索词,但是从2012年开始到现在,你几乎能听到各行各业的人都在谈论“大数据”。
这是一个增长非常迅速的领域,而且催生出了很多的工作机会。麦肯锡公司的一份报告预计,到2018年仅美国在“具备深入分析能力”的大数据专业人才方面的缺口就在14万人到18万人之间。据New Vantage Partners公司对《财富》美国500强公司的调查显示,85%的500强企业要么已经推出了大数据项目,要么正打算推出。未来几年他们花在数据分析上的投资将平均上涨36%。难怪《哈佛商业评论》的一篇文章里将数据分析称作“21世纪最热门的职业。”

对有志进入“大数据”职业领域的人来说,首先要搞清楚的一件事就是它的职业门槛有哪些。这个问题看似简单,实则复杂。大数据领域的发展非常迅速,而且各个公司的招聘标准也是五花八门。比如有些雇主可能要求你掌握某种特定的编程语言,但有些公司就根本没有这种要求。在这一点上,中美两国公司对大数据人才的期望体现出了一些不同的特点。
我们先来看国内的,在网上搜索“数据分析师”这个职位,百度显示的最新招聘信息约有近9000条。以其中一家“国内知名手机阅读公司”的招聘要求为例,应聘者需要满足:
·三年以上相关工作经历,至少有1-2个成功的中型项目经验;
· 优秀的商业分析报告撰写能力,有及时发现和分析其中隐含问题的敏锐性;
· 至少掌握一种数据分析工具(R/SAS/SPSS/Matlab),实现优化算法;
· 至少熟悉一种数据库,熟练运用SQL,有丰富的数据分析、挖掘、清洗和建模经验;
· 熟练使用JAVA/C++/Python/PHP 构建中等规模的数据分析系统, 有丰富的脚本处理数据经验。
再看看百度自家招聘数据分析师的职位要求:
·统计,数学,数据挖掘等专业;
· 互联网行业分析领域两年以上工作经验者优先;
· 扎实的机器学习/NLP理论和技术基础,能熟练使用SPSS/SAS/MATLAB等工具;
· 优秀的口头和书面表达能力;
· 具备Unix/Linux环境工作能力,能使用shell/python等脚本语言优先;
· 优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情;
· 良好的逻辑思维能力,学习能力强。
综合其他一些公司的相关职位招聘要求,大体上国内公司最看重的素质归纳起来有:能熟练使用数据分析工具(掌握SPSS/SAS/MATLAB是基本技能,有些公司会增加特定要求);有2-3年的工作经验;对数字敏感、分析能力、表达能力强。这些素质对从事数据分析来说都很重要。但问题是,大数据兴起也就是近两年发生的事,人才市场上哪里能迅速培养出这么多符合期望的候选人?
美国一些公司已认识到这一点,它们采取了更现实的做法:一方面,和大学合作,长期培养大数据专业人才以及开展相关研究,比如英特尔就和数据学专业排名靠前的麻省理工学院合作建立了大数据科学技术中心;IBM则投入1亿美元在中国大学推行大数据教育,目前已和北京理工大学、复旦大学、北京大学等7所大学达成合作。
另一方面,企业界已开始转换思路,不再寄望于找到某位全能型的天才来一手搞定所有的数据分析工作,而是吸引更多各有所长的人来组成一个能创造性解决问题的团队。有些甚至不需要有统计等特定专业背景。
所以对于想进入这个行业的人来说,别灰心,即使非计算机或数学科班出身,你依然有机会。美国大数据行业龙头FICO公司的首席分析官安德鲁•詹宁思就曾向《财富》表示:“如果你不是一个纯粹搞数学的人,或者不是一个专业的编程人员,那也没关系,因为你可以和那样的人在同一支团队里工作。除了量化分析方面以外,我们还非常需要具有求知和好奇天性的人,以及能够指出业务上的问题并且能与客户沟通的人。”
最后,我们来看一下这个行业的回报怎么样。由于目前大数据人才依然处于需求大于供给的状态,在美国,一位资深数据科学家在大型社交媒体企业当中可以拿到17.5万美元的年薪,而相关自由职业者的时薪可达200美元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28