京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用的10大神话和误区
英国科技新闻媒体V3日前针对大数据应用,列举了10大有关神话和误区。
1、大数据是新技术
大数据是新的术语,但其海量数据分析的概念并不新。许多人,包括Teradata首席技术官Stephen Brobst在内认为,对于那些刚开始认识到数据价值的用户,大数据有一些误导。Brobst表示:“大数据是一个长期项目,而不是12个月内,是24~36个月的世间情。”
2、大数据是一种商品
初次接触大数据概念,会认为它是一种特殊形式数据,独立于其他低端数据格式。但事实并非如此。
“你能买一个数据库数据吗?”Gartner杰出分析师Donald Feinberg说,“是的,你可以买到100台服务器,但是你可以购买大数据吗?因此,这不是一个市场。它只是IT市场的一部分。它价值10亿美元?是的,但它不是一个市场,它甚至不是一种商品,而且还不是新的。”
3、大数据是一个问题
这是一个近似半斤八两性质的公开辩题,但基于其基本形式,大数据具有巨大潜力,即使其没有被正确使用,或者甚至根本没有被使用。
因此,只要数据存在,并且可在未来用一种有效的方法加以处理,就应该有机会存在。也是一个价格昂贵的机会,也许,但仍然有机会。
数据问题是如何通过分析将其转化为清晰和实用的内容,这对企业是一个巨大的挑战。
4、你的数据只对你有用
据Gartner的统计,30%的企业会在未来几年会找到一种方式来套现其所持有的数据。将用户数据出售给出价最高者会引起担心和恐慌,但十有八九都会受到保证或者威胁。

5、人们不关心你如何使用他们的数据
很多人并不喜欢针对性或相关性的广告,但基于大数据驱动的市场营销接下来的重点,这事事实。但当你进入一家商铺,你的手机开始震动,告你在竞争对手店可以更低价格买到同样的产品时,这个时候你就会想到所签约的服务商。
即使是遭受恶评的利用人行为的无害化尝试也是具有一定价值的,其中伦敦的WiFi Smartbin就是一个典型的例子,它保持跟踪人们智能手机MAC地址,在广告风箱显示具有针对性的广告。不久伦敦城市管理公司意识到事情发生后,禁止了该行为,但这也不禁让我们联想到了Facebook所面临的2000万美元的集体诉讼。
6、大数据不会降落在监狱里的你
在这一点上,我们正在涉及一个颇具争议的话题。但Gartner公司的Feinberg确信,将会有相当的数据采集会涉及该领域。
“CIO会有多少人会去坐牢?如果觉得我在开玩笑,那么我就做另外一个大胆性假设:我认为Facebook总裁会在他离开Facebook之前去坐牢。我不知道什么时间,但它会发生。”Feinberg说,无论夸张与否,这都值得思考。
7、政府对你的社交媒体数据不感兴趣
许多人喜欢在Twitter上谩骂政客——反正他们也不会看到,对吗?也许是,但这对于了解选民的意向具有一定的参考价值,Feinberg说。
“奥巴马关心,因为他当选了,如果你看怎样当选的,他的团队使用社交数据和情感分析找出他不能胜出的目标对象。我不是说这他当选的唯一原因,但对于政府部门,社会资料和数据已经变得非常重要。”Feinberg说。
8、你需要新的数据进行分析
当你有一个业务目标之后,且数据仓库被0和1填充满了之后,你就可以分析使用你的数据了。有研究表明,大多数企业已经开始使用大数据获取信息,一旦他们想到了一个问题,就试图通过大数据分析来解决问题。
就像全球物流公司DHL早些时间像V3的记者所解释的那样,尽管此前在包裹投递的每一个阶段都有追踪,但是分析系统建立之前,没有办法利用这些数据。
9、有很多人以使用大数据
错了。这是一个世界性的难题。
Gartner统计数据表明,熟练的数据分析科学家如此缺乏,公司存在75%以上的大数据分析职位空缺。竞争惨烈,换句话说,这是一个很棒的职业。
话虽如此,这也取决于你如何定义一个数据分析科学家。Tesco公司的Duncan Apthorp,一位大数据分析师表示,他所存在公司并不要求名牌院校,这意味着普通毕业生也很有机会。
10、大公司都知道他们在做什么
显然不是。根据Gartner对数百家企业案例的研究:“在2016年,财富500强85%企业将无法利用大数据获得竞争优势。”
Teradata的高级副总裁Tasso Argyros表示:传统商业智能是从一个明确定义的问题开始,对于大数据发现,你有一个起点,但它不是一个业务问题,它是一个业务目标。问题在于你不知道要问什么问题或要使用什么数据,只是说’看这些数据,让我们开始,这通常很容易会失败。
所以,问题的答案是“不”,不是每个人都知道他们在做什么,很难制定出高效使用大数据的策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15