
大数据对中小企业的重要性
对于现在企业来说,最重要的资产无疑就是数据了,企业价值与其拥有的数据规模、活性,运用数据的能力成正比,企业的数据资产将在未来演绎着精彩的商业模式,如租售数据、数据使能、数据媒体、数据空间运营和大数据技术提供商等等,推动着企业的发展和革新。那么在大数据时代,企业如何利用数据管理系统来迎接更大的竞争?
1,企业领导层对大数据的认知
随着时代的变迁,商业模式已经发展过度到了数据时代,相较于以前营销为王的商业模式,大数据更能给现代企业创造价值,正所谓火车跑的快,全靠车头带,企业各部门领导者,甚至是老板本人,能对大数据应用有一个正确的认识,则更能把握企业发展前进的方向与命脉。
2,公众才是企业的决策者
在中国,许多的企业都是一人掌天下,老板往往把握着企业的命运和未来,但在大数据时代里,企业将慢慢树立以社会公众为决策主体的观念,决策的理念由狭隘的企业领导层转移到社会公众上,通过媒体、社交网络等平台收集社会公众的意见和观念,形成内外双向的大数据挖掘和分析,以提高决策的广泛性,合理性,正确性。
3,打造好信息化的基础,才能挖掘积累出大数据库
企业以信息化为基础,才能实现大数据挖掘,积累和分析,企业所有的产品数据、运营数据、供应链数据和外部数据都是来自于信息化系统,因此打好信息化基础就变的尤为重要了,完善信息化基础,让数据来源更真实和可靠。
4,便捷高效的大数据分析系统
大数据是一个海量的资源池,甚至如汪洋大海一般让人望而生畏,那么这样一个海量的资源池,企业怎样才能充分且高效的去吸收它的营养呢?这就需要一个高效率的云计算系统才能很好的完成这个任务,一个高效的云计算系统,可以使大数据里的资源合理分配,充分利用,给且的分析研究部门带来便捷,让工作效率得到显著的提升。
在未来大数据将成为最重要的经济资产,谁掌握了它便是掌握了竞争力,企业应与时俱进,敞开胸怀迎接大数据,重视大数据,利用大数据,在茫茫商海,乘风破浪,驶向远方。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23